當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.cast方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.cast方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.cast方法的具體用法?Python math_ops.cast怎麽用?Python math_ops.cast使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.cast方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: scheduled_sampling

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
    with variable_scope.variable_scope("ScheduledEmbedding"):
      # Return -1s where we do not sample, and sample_ids elsewhere
      select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
      select_sample = select_sampler.sample(sample_shape=batch_size)
      sample_ids = array_ops.where(
                  select_sample,
                  tf.range(batch_size),
                  gen_array_ops.fill([batch_size], -1))
      where_sampling = math_ops.cast(
          array_ops.where(sample_ids > -1), tf.int32)
      where_not_sampling = math_ops.cast(
          array_ops.where(sample_ids <= -1), tf.int32)
      _estimate = array_ops.gather_nd(estimate, where_sampling)
      _true = array_ops.gather_nd(true, where_not_sampling)

      base_shape = array_ops.shape(true)
      result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
      result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
      result = result1 + result2
      return result1 + result2 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:23,代碼來源:run_summarization.py

示例2: _apply_sparse

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _apply_sparse(self, grad, var):
        lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
        alpha_t = math_ops.cast(self._alpha_t, var.dtype.base_dtype)
        beta_t = math_ops.cast(self._beta_t, var.dtype.base_dtype)

        eps = 1e-7  # cap for moving average

        m = self.get_slot(var, "m")
        m_slice = tf.gather(m, grad.indices)
        m_t = state_ops.scatter_update(m, grad.indices,
                                       tf.maximum(beta_t * m_slice + eps, tf.abs(grad.values)))
        m_t_slice = tf.gather(m_t, grad.indices)

        var_update = state_ops.scatter_sub(var, grad.indices, lr_t * grad.values * tf.exp(
            tf.log(alpha_t) * tf.sign(grad.values) * tf.sign(m_t_slice)))  # Update 'ref' by subtracting 'value
        # Create an op that groups multiple operations.
        # When this op finishes, all ops in input have finished
        return control_flow_ops.group(*[var_update, m_t]) 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:20,代碼來源:optimizer.py

示例3: _apply_dense

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _apply_dense(self, grad, var):
        lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
        epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)

        # the following equations given in [1]
        # m_t = beta1 * m + (1 - beta1) * g_t
        m = self.get_slot(var, "m")
        m_t = state_ops.assign(m, beta1_t * m + (1. - beta1_t) * grad, use_locking=self._use_locking)

        # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
        v = self.get_slot(var, "v")
        v_t = state_ops.assign(v, beta2_t * v + (1. - beta2_t) * tf.square(grad), use_locking=self._use_locking)
        v_prime = self.get_slot(var, "v_prime")
        v_t_prime = state_ops.assign(v_prime, tf.maximum(v_prime, v_t))

        var_update = state_ops.assign_sub(var,
                                          lr_t * m_t / (tf.sqrt(v_t_prime) + epsilon_t),
                                          use_locking=self._use_locking)

        return control_flow_ops.group(*[var_update, m_t, v_t, v_t_prime])

    # keras Nadam update rule 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:26,代碼來源:optimizer.py

示例4: _resource_apply_dense

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _resource_apply_dense(self, grad, var):
        m = self.get_slot(var, "m")
        v = self.get_slot(var, "v")
        return training_ops.resource_apply_adam(
            var.handle,
            m.handle,
            v.handle,
            math_ops.cast(self._beta1_power, grad.dtype.base_dtype),
            math_ops.cast(self._beta2_power, grad.dtype.base_dtype),
            math_ops.cast(self._lr_t, grad.dtype.base_dtype),
            math_ops.cast(self._beta1_t, grad.dtype.base_dtype),
            math_ops.cast(self._beta2_t, grad.dtype.base_dtype),
            math_ops.cast(self._epsilon_t, grad.dtype.base_dtype),
            grad,
            use_locking=self._use_locking,
            use_nesterov=True)

    # keras Nadam update rule 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:20,代碼來源:optimizer.py

示例5: distort_color

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def distort_color(image, color_ordering=0, scope=None):
    """
    隨機進行圖像增強(亮度、對比度操作)
    :param image: 輸入圖片
    :param color_ordering:模式
    :param scope: 命名空間
    :return: 增強後的圖片
    """
    with tf.name_scope(scope, 'distort_color', [image]):
        if color_ordering == 0:  # 模式0.先調整亮度,再調整對比度
            rand_temp = random_ops.random_uniform([], -55, 20, seed=None) # [-70, 30] for generate img, [-50, 20] for true img 
            image = math_ops.add(image, math_ops.cast(rand_temp, dtypes.float32))
            image = tf.image.random_contrast(image, lower=0.45, upper=1.5) # [0.3, 1.75] for generate img, [0.45, 1.5] for true img 
        else:
            image = tf.image.random_contrast(image, lower=0.45, upper=1.5)
            rand_temp = random_ops.random_uniform([], -55, 30, seed=None)
            image = math_ops.add(image, math_ops.cast(rand_temp, dtypes.float32))

        # The random_* ops do not necessarily clamp.
        print(color_ordering)
        return tf.clip_by_value(image, 0.0, 255.0)  # 限定在0-255
########################################################################## 
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:24,代碼來源:train_crnn.py

示例6: shuffle_join

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def shuffle_join(tensor_list_list, capacity,
                 min_ad, phase):
    name = 'shuffel_input'
    types = _dtypes(tensor_list_list)
    queue = data_flow_ops.RandomShuffleQueue(
        capacity=capacity, min_after_dequeue=min_ad,
        dtypes=types)

    # Build enque Operations
    _enqueue_join(queue, tensor_list_list)

    full = (math_ops.cast(math_ops.maximum(0, queue.size() - min_ad),
                          dtypes.float32) * (1. / (capacity - min_ad)))
    # Note that name contains a '/' at the end so we intentionally do not place
    # a '/' after %s below.
    summary_name = (
        "queue/%s/fraction_over_%d_of_%d_full" %
        (name + '_' + phase, min_ad, capacity - min_ad))
    tf.summary.scalar(summary_name, full)

    dequeued = queue.dequeue(name='shuffel_deqeue')
    # dequeued = _deserialize_sparse_tensors(dequeued, sparse_info)
    return dequeued 
開發者ID:MarvinTeichmann,項目名稱:KittiSeg,代碼行數:25,代碼來源:kitti_seg_input.py

示例7: _apply_dense

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _apply_dense(self, grad, var):
    lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
    beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
    beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
    if var.dtype.base_dtype == tf.float16:
        eps = 1e-7  # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
    else:
        eps = 1e-8

    v = self.get_slot(var, "v")
    v_t = v.assign(beta2_t * v + (1. - beta2_t) * tf.square(grad))
    m = self.get_slot(var, "m")
    m_t = m.assign( beta1_t * m + (1. - beta1_t) * grad )
    v_t_hat = tf.div(v_t, 1. - beta2_t)
    m_t_hat = tf.div(m_t, 1. - beta1_t)
    
    g_t = tf.div( m_t, tf.sqrt(v_t)+eps )
    g_t_1 = self.get_slot(var, "g")
    g_t = g_t_1.assign( g_t )

    var_update = state_ops.assign_sub(var, 2. * lr_t * g_t - lr_t * g_t_1) #Adam would be lr_t * g_t
    return control_flow_ops.group(*[var_update, m_t, v_t, g_t]) 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:24,代碼來源:adamirror.py

示例8: _DynamicStitchGrads

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _DynamicStitchGrads(op, grad):
  """Gradients for DynamicStitch."""

  num_values = len(op.inputs) // 2
  indices_grad = [None] * num_values

  def AsInt32(x):
    return (x if op.inputs[0].dtype == dtypes.int32 else
            math_ops.cast(x, dtypes.int32))
  inputs = [AsInt32(op.inputs[i]) for i in xrange(num_values)]
  if isinstance(grad, ops.IndexedSlices):
    output_shape = array_ops.shape(op.outputs[0])
    output_rows = output_shape[0]
    grad = math_ops.unsorted_segment_sum(grad.values, grad.indices, output_rows)
  values_grad = [array_ops.gather(grad, inp) for inp in inputs]
  return indices_grad + values_grad 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:data_flow_grad.py

示例9: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    if self.total_count.get_shape().ndims is not None:
      if self.total_count.get_shape().ndims != 0:
        raise NotImplementedError(
            "Sample only supported for scalar number of draws.")
    elif self.validate_args:
      is_scalar = check_ops.assert_rank(
          n_draws, 0,
          message="Sample only supported for scalar number of draws.")
      n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
    k = self.event_shape_tensor()[0]
    # Flatten batch dims so logits has shape [B, k],
    # where B = reduce_prod(self.batch_shape_tensor()).
    draws = random_ops.multinomial(
        logits=array_ops.reshape(self.logits, [-1, k]),
        num_samples=n * n_draws,
        seed=seed)
    draws = array_ops.reshape(draws, shape=[-1, n, n_draws])
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k),
                            axis=-2)  # shape: [B, n, k]
    x = array_ops.transpose(x, perm=[1, 0, 2])
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    return array_ops.reshape(x, final_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:multinomial.py

示例10: assert_integer_form

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def assert_integer_form(
    x, data=None, summarize=None, message=None, name="assert_integer_form"):
  """Assert that x has integer components (or floats equal to integers).

  Args:
    x: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if round(x) != x.
  """

  message = message or "x has non-integer components"
  x = ops.convert_to_tensor(x, name="x")
  casted_x = math_ops.to_int64(x)
  return check_ops.assert_equal(
      x, math_ops.cast(math_ops.round(casted_x), x.dtype),
      data=data, summarize=summarize, message=message, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:util.py

示例11: _mode

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _mode(self):
    k = math_ops.cast(self.event_shape_tensor()[0], self.dtype)
    mode = (self.concentration - 1.) / (
        self.total_concentration[..., array_ops.newaxis] - k)
    if self.allow_nan_stats:
      nan = array_ops.fill(
          array_ops.shape(mode),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      return array_ops.where(
          math_ops.reduce_all(self.concentration > 1., axis=-1),
          mode, nan)
    return control_flow_ops.with_dependencies([
        check_ops.assert_less(
            array_ops.ones([], self.dtype),
            self.concentration,
            message="Mode undefined when any concentration <= 1"),
    ], mode) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:dirichlet.py

示例12: _log_prob

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _log_prob(self, event):
    event = self._maybe_assert_valid_sample(event)
    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent  behavior for logits = inf/-inf.
    event = math_ops.cast(event, self.logits.dtype)
    logits = self.logits
    # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
    # so we do this here.

    def _broadcast(logits, event):
      return (array_ops.ones_like(event) * logits,
              array_ops.ones_like(logits) * event)

    # First check static shape.
    if (event.get_shape().is_fully_defined() and
        logits.get_shape().is_fully_defined()):
      if event.get_shape() != logits.get_shape():
        logits, event = _broadcast(logits, event)
    else:
      logits, event = control_flow_ops.cond(
          distribution_util.same_dynamic_shape(logits, event),
          lambda: (logits, event),
          lambda: _broadcast(logits, event))
    return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:bernoulli.py

示例13: _MinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _MinOrMaxGrad(op, grad):
  """Gradient for Min or Max. Amazingly it's precisely the same code."""
  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  y = op.outputs[0]
  y = array_ops.reshape(y, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)

  # Compute the number of selected (maximum or minimum) elements in each
  # reduction dimension. If there are multiple minimum or maximum elements
  # then the gradient will be divided between them.
  indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype)
  num_selected = array_ops.reshape(
      math_ops.reduce_sum(indicators, op.inputs[1]), output_shape_kept_dims)

  return [math_ops.div(indicators, num_selected) * grad, None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:math_grad.py

示例14: _apply_sparse

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def _apply_sparse(self, grad, var):
    accum = self.get_slot(var, "accum")
    linear = self.get_slot(var, "linear")
    return training_ops.sparse_apply_ftrl(
        var,
        accum,
        linear,
        grad.values,
        grad.indices,
        math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
        math_ops.cast(self._l1_regularization_strength_tensor,
                      var.dtype.base_dtype),
        math_ops.cast(self._l2_regularization_strength_tensor,
                      var.dtype.base_dtype),
        math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
        use_locking=self._use_locking) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:ftrl.py

示例15: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cast [as 別名]
def __init__(self, learning_rate=0.002, beta1=0.9, beta2=0.999, epsilon=1e-8,
                 schedule_decay=0.004, use_locking=False, name="Nadam"):
        super(LazyNadamOptimizer, self).__init__(use_locking, name)
        self._lr = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._schedule_decay = schedule_decay
        # momentum cache decay
        self._momentum_cache_decay = tf.cast(0.96, tf.float32)
        self._momentum_cache_const = tf.pow(self._momentum_cache_decay, 1. * schedule_decay)

        # Tensor versions of the constructor arguments, created in _prepare().
        self._lr_t = None
        self._beta1_t = None
        self._beta2_t = None
        self._epsilon_t = None
        self._schedule_decay_t = None

        # Variables to accumulate the powers of the beta parameters.
        # Created in _create_slots when we know the variables to optimize.
        self._beta1_power = None
        self._beta2_power = None
        self._iterations = None
        self._m_schedule = None

        # Created in SparseApply if needed.
        self._updated_lr = None 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:30,代碼來源:optimizer.py


注:本文中的tensorflow.python.ops.math_ops.cast方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。