本文整理匯總了Python中tensorflow.python.ops.math_ops.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.argmax方法的具體用法?Python math_ops.argmax怎麽用?Python math_ops.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.argmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sample
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def sample(self, time, outputs, state, name=None):
"""Gets a sample for one step."""
del time, state # unused by sample_fn
# Outputs are logits, we sample instead of argmax (greedy).
if not isinstance(outputs, ops.Tensor):
raise TypeError("Expected outputs to be a single Tensor, got: %s" %
type(outputs))
if self._softmax_temperature is None:
logits = outputs
else:
logits = outputs / self._softmax_temperature
sample_id_sampler = categorical.Categorical(logits=logits)
sample_ids = sample_id_sampler.sample(seed=self._seed)
return sample_ids
示例2: hardmax
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def hardmax(logits, name=None):
"""Returns batched one-hot vectors.
The depth index containing the `1` is that of the maximum logit value.
Args:
logits: A batch tensor of logit values.
name: Name to use when creating ops.
Returns:
A batched one-hot tensor.
"""
with ops.name_scope(name, "Hardmax", [logits]):
logits = ops.convert_to_tensor(logits, name="logits")
if logits.get_shape()[-1].value is not None:
depth = logits.get_shape()[-1].value
else:
depth = array_ops.shape(logits)[-1]
return array_ops.one_hot(
math_ops.argmax(logits, -1), depth, dtype=logits.dtype)
示例3: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def __init__(self, embedding, start_tokens, end_token, seed=None):
"""Initializer.
Args:
embedding: A callable that takes a vector tensor of `ids` (argmax ids),
or the `params` argument for `embedding_lookup`. The returned tensor
will be passed to the decoder input.
start_tokens: `int32` vector shaped `[batch_size]`, the start tokens.
end_token: `int32` scalar, the token that marks end of decoding.
seed: The sampling seed.
Raises:
ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a
scalar.
"""
super(SampleEmbeddingHelper, self).__init__(
embedding, start_tokens, end_token)
self._seed = seed
示例4: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 231, 231
eval_height, eval_width = 281, 281
num_classes = 1000
with self.test_session():
train_inputs = random_ops.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = overfeat.overfeat(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
variable_scope.get_variable_scope().reuse_variables()
eval_inputs = random_ops.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = overfeat.overfeat(
eval_inputs, is_training=False, spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = math_ops.reduce_mean(logits, [1, 2])
predictions = math_ops.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例5: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 300, 400
num_classes = 1000
with self.test_session():
train_inputs = random_ops.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = alexnet.alexnet_v2(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
variable_scope.get_variable_scope().reuse_variables()
eval_inputs = random_ops.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = alexnet.alexnet_v2(
eval_inputs, is_training=False, spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 4, 7, num_classes])
logits = math_ops.reduce_mean(logits, [1, 2])
predictions = math_ops.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例6: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 256, 256
num_classes = 1000
with self.test_session():
train_inputs = random_ops.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = vgg.vgg_16(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
variable_scope.get_variable_scope().reuse_variables()
eval_inputs = random_ops.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = vgg.vgg_16(
eval_inputs, is_training=False, spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = math_ops.reduce_mean(logits, [1, 2])
predictions = math_ops.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例7: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = random_ops.random_uniform(
(train_batch_size, height, width, 3))
inception_v3.inception_v3(train_inputs, num_classes)
eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception_v3.inception_v3(
eval_inputs, num_classes, is_training=False, reuse=True)
predictions = math_ops.argmax(logits, 1)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例8: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 224, 224
num_classes = 1000
train_inputs = random_ops.random_uniform(
(train_batch_size, height, width, 3))
inception_v1.inception_v1(train_inputs, num_classes)
eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception_v1.inception_v1(eval_inputs, num_classes, reuse=True)
predictions = math_ops.argmax(logits, 1)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例9: predict
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def predict(
self, x=None, input_fn=None, axis=None, batch_size=None):
"""Returns predictions for given features.
Args:
x: features.
input_fn: Input function. If set, x must be None.
axis: Axis on which to argmax (for classification).
Last axis is used by default.
batch_size: Override default batch size.
Returns:
Numpy array of predicted classes or regression values (or an iterable of
predictions if as_iterable is True).
"""
predict_name = (eval_metrics.INFERENCE_PROB_NAME if self.params.regression
else eval_metrics.INFERENCE_PRED_NAME)
if x is not None:
results = self._skcompat.predict(x, batch_size=batch_size)
return results[predict_name]
else:
results = self._estimator.predict(input_fn=input_fn, as_iterable=True)
return (x[predict_name] for x in results)
示例10: __call__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def __call__(self, inputs, state, scope=None):
"""Build the CrfDecodeForwardRnnCell.
Args:
inputs: A [batch_size, num_tags] matrix of unary potentials.
state: A [batch_size, num_tags] matrix containing the previous step's
score values.
scope: Unused variable scope of this cell.
Returns:
backpointers: [batch_size, num_tags], containing backpointers.
new_state: [batch_size, num_tags], containing new score values.
"""
# For simplicity, in shape comments, denote:
# 'batch_size' by 'B', 'max_seq_len' by 'T' , 'num_tags' by 'O' (output).
state = array_ops.expand_dims(state, 2) # [B, O, 1]
# This addition op broadcasts self._transitions_params along the zeroth
# dimension and state along the second dimension.
# [B, O, 1] + [1, O, O] -> [B, O, O]
transition_scores = state + self._transition_params # [B, O, O]
new_state = inputs + math_ops.reduce_max(transition_scores, [1]) # [B, O]
backpointers = math_ops.argmax(transition_scores, 1)
backpointers = math_ops.cast(backpointers, dtype=dtypes.int32) # [B, O]
return backpointers, new_state
示例11: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 231, 231
eval_height, eval_width = 281, 281
num_classes = 1000
with self.cached_session():
train_inputs = random_ops.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = overfeat.overfeat(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
variable_scope.get_variable_scope().reuse_variables()
eval_inputs = random_ops.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = overfeat.overfeat(
eval_inputs, is_training=False, spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = math_ops.reduce_mean(logits, [1, 2])
predictions = math_ops.argmax(logits, 1)
self.assertEqual(predictions.get_shape().as_list(), [eval_batch_size])
示例12: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 300, 400
num_classes = 1000
with self.cached_session():
train_inputs = random_ops.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = alexnet.alexnet_v2(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
variable_scope.get_variable_scope().reuse_variables()
eval_inputs = random_ops.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = alexnet.alexnet_v2(
eval_inputs, is_training=False, spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 4, 7, num_classes])
logits = math_ops.reduce_mean(logits, [1, 2])
predictions = math_ops.argmax(logits, 1)
self.assertEqual(predictions.get_shape().as_list(), [eval_batch_size])
示例13: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 256, 256
num_classes = 1000
with self.cached_session():
train_inputs = random_ops.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = vgg.vgg_16(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
variable_scope.get_variable_scope().reuse_variables()
eval_inputs = random_ops.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = vgg.vgg_16(
eval_inputs, is_training=False, spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = math_ops.reduce_mean(logits, [1, 2])
predictions = math_ops.argmax(logits, 1)
self.assertEqual(predictions.get_shape().as_list(), [eval_batch_size])
示例14: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = random_ops.random_uniform(
(train_batch_size, height, width, 3))
inception_v3.inception_v3(train_inputs, num_classes)
eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception_v3.inception_v3(
eval_inputs, num_classes, is_training=False, reuse=True)
predictions = math_ops.argmax(logits, 1)
with self.cached_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(predictions)
self.assertEqual(output.shape, (eval_batch_size,))
示例15: testTrainEvalWithReuse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import argmax [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 224, 224
num_classes = 1000
train_inputs = random_ops.random_uniform(
(train_batch_size, height, width, 3))
inception_v1.inception_v1(train_inputs, num_classes)
eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception_v1.inception_v1(eval_inputs, num_classes, reuse=True)
predictions = math_ops.argmax(logits, 1)
with self.cached_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(predictions)
self.assertEqual(output.shape, (eval_batch_size,))