本文整理匯總了Python中tensorflow.python.ops.math_ops.add_n方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.add_n方法的具體用法?Python math_ops.add_n怎麽用?Python math_ops.add_n使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.add_n方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _MultiDeviceAddN
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _MultiDeviceAddN(tensor_list):
"""Adds tensors from potentially multiple devices."""
# Basic function structure comes from control_flow_ops.group().
# Sort tensors according to their devices.
tensors_on_device = collections.defaultdict(lambda: [])
for tensor in tensor_list:
tensors_on_device[tensor.device].append(tensor)
# For each device, add the tensors on that device first.
# Then gather the partial sums from multiple devices.
# TODO(sjhwang): Create hierarchical aggregation tree as pbar's suggestion.
# E.g., aggregate per GPU, then per task, and so on.
summands = []
def DeviceKey(dev):
return "" if dev is None else dev
for dev in sorted(six.iterkeys(tensors_on_device), key=DeviceKey):
tensors = tensors_on_device[dev]
with ops.colocate_with(tensors[0].op, ignore_existing=True):
summands.append(math_ops.add_n(tensors))
return math_ops.add_n(summands)
示例2: get_total_loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def get_total_loss(add_regularization_losses=True, name="total_loss"):
"""Returns a tensor whose value represents the total loss.
In particular, this adds any losses you have added with `tf.add_loss()` to
any regularization losses that have been added by regularization parameters
on layers constructors e.g. `tf.layers`. Be very sure to use this if you
are constructing a loss_op manually. Otherwise regularization arguments
on `tf.layers` methods will not function.
Args:
add_regularization_losses: A boolean indicating whether or not to use the
regularization losses in the sum.
name: The name of the returned tensor.
Returns:
A `Tensor` whose value represents the total loss.
Raises:
ValueError: if `losses` is not iterable.
"""
losses = get_losses()
if add_regularization_losses:
losses += get_regularization_losses()
return math_ops.add_n(losses, name=name)
示例3: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _init_clusters_random(data, num_clusters, random_seed):
"""Does random initialization of clusters.
Args:
data: a list of Tensors with a matrix of data, each row is an example.
num_clusters: an integer with the number of clusters.
random_seed: Seed for PRNG used to initialize seeds.
Returns:
A Tensor with num_clusters random rows of data.
"""
assert isinstance(data, list)
num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in data])
with ops.control_dependencies(
[check_ops.assert_less_equal(num_clusters, num_data)]):
indices = random_ops.random_uniform(
[num_clusters],
minval=0,
maxval=math_ops.cast(num_data, dtypes.int64),
seed=random_seed,
dtype=dtypes.int64)
indices %= math_ops.cast(num_data, dtypes.int64)
clusters_init = embedding_lookup(data, indices, partition_strategy='div')
return clusters_init
示例4: _prepare_gramian
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _prepare_gramian(self, factors, gramian):
"""Helper function to create ops to prepare/calculate gramian.
Args:
factors: Variable or list of Variable representing (sharded) factors.
Used to compute the updated corresponding gramian value.
gramian: Variable storing the gramian calculated from the factors.
Returns:
A op that updates the gramian with the calcuated value from the factors.
"""
partial_gramians = []
for f in factors:
with ops.colocate_with(f):
partial_gramians.append(math_ops.matmul(f, f, transpose_a=True))
with ops.colocate_with(gramian):
prep_gramian = state_ops.assign(gramian,
math_ops.add_n(partial_gramians)).op
return prep_gramian
示例5: _mean
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _mean(self):
with ops.control_dependencies(self._assertions):
distribution_means = [d.mean() for d in self.components]
cat_probs = self._cat_probs(log_probs=False)
# This was checked to not be None at construction time.
static_event_rank = self.event_shape.ndims
# Expand the rank of x up to static_event_rank times so that
# broadcasting works correctly.
def expand(x):
expanded_x = x
for _ in range(static_event_rank):
expanded_x = array_ops.expand_dims(expanded_x, -1)
return expanded_x
cat_probs = [expand(c_p) for c_p in cat_probs]
partial_means = [
c_p * m for (c_p, m) in zip(cat_probs, distribution_means)
]
# These should all be the same shape by virtue of matching
# batch_shape and event_shape.
return math_ops.add_n(partial_means)
示例6: reduce_sum_n
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def reduce_sum_n(tensors, name=None):
"""Reduce tensors to a scalar sum.
This reduces each tensor in `tensors` to a scalar via `tf.reduce_sum`, then
adds them via `tf.add_n`.
Args:
tensors: List of tensors, all of the same numeric type.
name: Tensor name, and scope for all other ops.
Returns:
Total loss tensor, or None if no losses have been configured.
Raises:
ValueError: if `losses` is missing or empty.
"""
if not tensors:
raise ValueError('No tensors provided.')
with ops.name_scope(name, 'reduce_sum_n', tensors) as name_scope:
tensors = [
math_ops.reduce_sum(t, name='%s/sum' % t.op.name) for t in tensors]
if len(tensors) == 1:
return tensors[0]
return math_ops.add_n(tensors, name=name_scope)
示例7: get_total_loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def get_total_loss(add_regularization_losses=True, name="total_loss"):
"""Returns a tensor whose value represents the total loss.
Notice that the function adds the given losses to the regularization losses.
Args:
add_regularization_losses: A boolean indicating whether or not to use the
regularization losses in the sum.
name: The name of the returned tensor.
Returns:
A `Tensor` whose value represents the total loss.
Raises:
ValueError: if `losses` is not iterable.
"""
losses = get_losses()
if add_regularization_losses:
losses += get_regularization_losses()
return math_ops.add_n(losses, name=name)
示例8: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _init_clusters_random(self):
"""Does random initialization of clusters.
Returns:
Tensor of randomly initialized clusters.
"""
num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in self._inputs])
# Note that for mini-batch k-means, we should ensure that the batch size of
# data used during initialization is sufficiently large to avoid duplicated
# clusters.
with ops.control_dependencies(
[check_ops.assert_less_equal(self._num_clusters, num_data)]):
indices = random_ops.random_uniform(
array_ops.reshape(self._num_clusters, [-1]),
minval=0,
maxval=math_ops.cast(num_data, dtypes.int64),
seed=self._random_seed,
dtype=dtypes.int64)
clusters_init = embedding_lookup(
self._inputs, indices, partition_strategy='div')
return clusters_init
示例9: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _init_clusters_random(data, num_clusters, random_seed):
"""Does random initialization of clusters.
Args:
data: a list of Tensors with a matrix of data, each row is an example.
num_clusters: an integer with the number of clusters.
random_seed: Seed for PRNG used to initialize seeds.
Returns:
A Tensor with num_clusters random rows of data.
"""
assert isinstance(data, list)
num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in data])
with ops.control_dependencies(
[check_ops.assert_less_equal(num_clusters, num_data)]):
indices = random_ops.random_uniform(
[num_clusters],
minval=0,
maxval=math_ops.cast(num_data, dtypes.int64),
seed=random_seed,
dtype=dtypes.int64)
indices = math_ops.cast(indices, dtypes.int32) % num_data
clusters_init = embedding_lookup(data, indices, partition_strategy='div')
return clusters_init
示例10: sum_regularizer
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def sum_regularizer(regularizer_list, scope=None):
"""Returns a function that applies the sum of multiple regularizers.
Args:
regularizer_list: A list of regularizers to apply.
scope: An optional scope name
Returns:
A function with signature `sum_reg(weights)` that applies the
sum of all the input regularizers.
"""
regularizer_list = [reg for reg in regularizer_list if reg is not None]
if not regularizer_list:
return None
def sum_reg(weights):
"""Applies the sum of all the input regularizers."""
with ops.name_scope(scope, 'sum_regularizer', [weights]) as name:
regularizer_tensors = [reg(weights) for reg in regularizer_list]
return math_ops.add_n(regularizer_tensors, name=name)
return sum_reg
示例11: _mean
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _mean(self):
with ops.control_dependencies(self._assertions):
distribution_means = [d.mean() for d in self.components]
cat_probs = self._cat_probs(log_probs=False)
# This was checked to not be None at construction time.
static_event_rank = self.get_event_shape().ndims
# Expand the rank of x up to static_event_rank times so that
# broadcasting works correctly.
def expand(x):
expanded_x = x
for _ in range(static_event_rank):
expanded_x = array_ops.expand_dims(expanded_x, -1)
return expanded_x
cat_probs = [expand(c_p) for c_p in cat_probs]
partial_means = [
c_p * m for (c_p, m) in zip(cat_probs, distribution_means)
]
# These should all be the same shape by virtue of matching
# batch_shape and event_shape.
return math_ops.add_n(partial_means)
示例12: reduce_sum_n
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def reduce_sum_n(tensors, name=None):
"""Reduce tensors to a scalar sum.
This reduces each tensor in `tensors` to a scalar via `tf.reduce_sum`, then
adds them via `tf.add_n`.
Args:
tensors: List of tensors, all of the same numeric type.
name: Tensor name, and scope for all other ops.
Returns:
Total loss tensor, or None if no losses have been configured.
Raises:
ValueError: if `losses` is missing or empty.
"""
if not tensors:
raise ValueError('No tensors provided.')
tensors = [math_ops.reduce_sum(t, name='%s/sum' % t.op.name) for t in tensors]
if len(tensors) == 1:
return tensors[0]
with ops.name_scope(name, 'reduce_sum_n', tensors) as scope:
return math_ops.add_n(tensors, name=scope)
示例13: _acc_grads
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _acc_grads(*lists_of_grads):
"""Accumulates lists of gradients."""
acc_grads = []
for grads in zip(*lists_of_grads):
grads = [g for g in grads if g is not None]
if grads:
acc_grads.append(math_ops.add_n(grads))
else:
acc_grads.append(None)
return acc_grads
示例14: _force_data_dependency
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def _force_data_dependency(first_compute, then_compute):
"""Force all of `then_compute` to depend on all of `first_compute`.
Uses a dummy data dependency, which is useful when running on TPUs because
XLA ignores control dependencies. Only supports float arguments.
Args:
first_compute: `list<Tensor>`. These will be made to run before the
`Tensor`s `then_compute`.
then_compute: `list<Tensor>`. These will run after all the `Tensor`s in
`first_compute`.
Returns:
`list<Tensor>`, same length as `then_compute`.
Raises:
ValueError: if ranks are unknown or types are not floating.
"""
def _first_element(x):
if x.get_shape().ndims is None:
raise ValueError("Rank of Tensor %s must be known" % x)
ndims = x.get_shape().ndims
begin = framework_ops.convert_to_tensor([0] * ndims, dtype=dtypes.int32)
size = framework_ops.convert_to_tensor([1] * ndims, dtype=dtypes.int32)
return array_ops.reshape(array_ops.slice(x, begin, size), [])
first_compute_sum = math_ops.add_n(
[_first_element(x) for x in first_compute if x is not None])
dtype = first_compute_sum.dtype
if not dtype.is_floating:
raise ValueError("_force_data_dependency only supports floating dtypes.")
epsilon = np.finfo(dtype.as_numpy_dtype).tiny
zero = array_ops.stop_gradient(epsilon * first_compute_sum)
return [
array_ops.identity(x) + zero if x is not None else None
for x in then_compute
]
示例15: sum_regularizer
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add_n [as 別名]
def sum_regularizer(regularizer_list, scope=None):
"""Returns a function that applies the sum of multiple regularizers.
Args:
regularizer_list: A list of regularizers to apply.
scope: An optional scope name
Returns:
A function with signature `sum_reg(weights)` that applies the
sum of all the input regularizers.
"""
regularizer_list = [reg for reg in regularizer_list if reg is not None]
if not regularizer_list:
return None
def sum_reg(weights):
"""Applies the sum of all the input regularizers."""
with ops.name_scope(scope, 'sum_regularizer', [weights]) as name:
regularizer_tensors = []
for reg in regularizer_list:
tensor = reg(weights)
if tensor is not None:
regularizer_tensors.append(tensor)
return math_ops.add_n(
regularizer_tensors, name=name) if regularizer_tensors else None
return sum_reg