本文整理匯總了Python中tensorflow.python.ops.math_ops.add方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.add方法的具體用法?Python math_ops.add怎麽用?Python math_ops.add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: distort_color
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def distort_color(image, color_ordering=0, scope=None):
"""
隨機進行圖像增強(亮度、對比度操作)
:param image: 輸入圖片
:param color_ordering:模式
:param scope: 命名空間
:return: 增強後的圖片
"""
with tf.name_scope(scope, 'distort_color', [image]):
if color_ordering == 0: # 模式0.先調整亮度,再調整對比度
rand_temp = random_ops.random_uniform([], -55, 20, seed=None) # [-70, 30] for generate img, [-50, 20] for true img
image = math_ops.add(image, math_ops.cast(rand_temp, dtypes.float32))
image = tf.image.random_contrast(image, lower=0.45, upper=1.5) # [0.3, 1.75] for generate img, [0.45, 1.5] for true img
else:
image = tf.image.random_contrast(image, lower=0.45, upper=1.5)
rand_temp = random_ops.random_uniform([], -55, 30, seed=None)
image = math_ops.add(image, math_ops.cast(rand_temp, dtypes.float32))
# The random_* ops do not necessarily clamp.
print(color_ordering)
return tf.clip_by_value(image, 0.0, 255.0) # 限定在0-255
##########################################################################
示例2: testDebugWhileLoopWatchingWholeGraphWorks
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testDebugWhileLoopWatchingWholeGraphWorks(self):
with session.Session() as sess:
loop_body = lambda i: math_ops.add(i, 2)
loop_cond = lambda i: math_ops.less(i, 16)
i = constant_op.constant(10, name="i")
loop = control_flow_ops.while_loop(loop_cond, loop_body, [i])
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(run_options,
sess.graph,
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
self.assertEqual(
16, sess.run(loop, options=run_options, run_metadata=run_metadata))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertEqual(
[[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity"))
self.assertEqual(
[[12], [14], [16]],
dump.get_tensors("while/NextIteration", 0, "DebugIdentity"))
示例3: testDebugCondWatchingWholeGraphWorks
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testDebugCondWatchingWholeGraphWorks(self):
with session.Session() as sess:
x = variables.Variable(10.0, name="x")
y = variables.Variable(20.0, name="y")
cond = control_flow_ops.cond(
x > y, lambda: math_ops.add(x, 1), lambda: math_ops.add(y, 1))
sess.run(variables.global_variables_initializer())
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(run_options,
sess.graph,
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
self.assertEqual(
21, sess.run(cond, options=run_options, run_metadata=run_metadata))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertAllClose(
[21.0], dump.get_tensors("cond/Merge", 0, "DebugIdentity"))
示例4: _init_values_from_proto
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def _init_values_from_proto(self, values_def, import_scope=None):
"""Initializes values and external_values from `ValuesDef` protocol buffer.
Args:
values_def: `ValuesDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(values_def, control_flow_pb2.ValuesDef)
self._values = set(values_def.values)
g = ops.get_default_graph()
self._external_values = {}
for k, v in values_def.external_values.items():
self._external_values[k] = g.as_graph_element(
ops.prepend_name_scope(v, import_scope))
op_names = set([op.split(":")[0]
for op in self._values - set(self._external_values)])
for op in op_names:
# pylint: disable=protected-access
g.as_graph_element(ops.prepend_name_scope(
op, import_scope))._set_control_flow_context(self)
# pylint: enable=protected-access
示例5: AddValue
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def AddValue(self, val):
"""Add `val` to the current context and its outer context recursively."""
if val.name in self._values:
# Use the real value if it comes from outer context. This is needed in
# particular for nested conds.
result = self._external_values.get(val.name)
result = val if result is None else result
else:
result = val
self._values.add(val.name)
if self._outer_context:
result = self._outer_context.AddValue(val)
self._values.add(result.name)
with ops.control_dependencies(None):
result = _SwitchRefOrTensor(result, self._pred)[self._branch]
result.op.graph.prevent_fetching(result.op)
# pylint: disable=protected-access
result.op._set_control_flow_context(self)
# pylint: enable=protected-access
self._values.add(result.name)
self._external_values[val.name] = result
return result
示例6: _ProcessOutputTensor
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def _ProcessOutputTensor(self, val):
"""Process an output tensor of a conditional branch."""
real_val = val
if val.name not in self._values:
# Handle the special case of lambda: x
self._values.add(val.name)
if self._outer_context:
real_val = self._outer_context.AddValue(val)
self._values.add(real_val.name)
real_val = _SwitchRefOrTensor(real_val, self._pred)[self._branch]
self._external_values[val.name] = real_val
else:
external_val = self._external_values.get(val.name)
if external_val is not None:
real_val = external_val
return real_val
示例7: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def __init__(self, parallel_iterations=10, back_prop=True, swap_memory=False,
name="while_context", grad_state=None, context_def=None,
import_scope=None):
""""Creates a `WhileContext`.
Args:
parallel_iterations: The number of iterations allowed to run in parallel.
back_prop: Whether backprop is enabled for this while loop.
swap_memory: Whether GPU-CPU memory swap is enabled for this loop.
name: Optional name prefix for the returned tensors.
grad_state: The gradient loop state.
context_def: Optional `WhileContextDef` protocol buffer to initialize
the `Whilecontext` python object from.
import_scope: Optional `string`. Name scope to add. Only used when
initialing from protocol buffer.
"""
if context_def:
self._init_from_proto(context_def, import_scope=import_scope)
else:
ControlFlowContext.__init__(self)
self._init_from_args(parallel_iterations, back_prop, swap_memory,
name)
# The gradient loop state.
self._grad_state = grad_state
示例8: _InitializeValues
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def _InitializeValues(self, values):
"""Makes the values known to this context."""
self._values = set()
for x in values:
if isinstance(x, ops.Tensor):
self._values.add(x.name)
else:
self._values.add(x.values.name)
self._values.add(x.indices.name)
if isinstance(x, ops.IndexedSlices):
dense_shape = x.dense_shape
elif isinstance(x, sparse_tensor.SparseTensor):
dense_shape = x.dense_shape
else:
raise TypeError("Type %s not supported" % type(x))
if dense_shape is not None:
self._values.add(dense_shape.name)
示例9: _get_dense_tensor
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
"""Returns a `Tensor`.
The output of this function will be used by model-builder-functions. For
example the pseudo code of `input_layer` will be like:
```python
def input_layer(features, feature_columns, ...):
outputs = [fc._get_dense_tensor(...) for fc in feature_columns]
return tf.concat(outputs)
```
Args:
inputs: A `_LazyBuilder` object to access inputs.
weight_collections: List of graph collections to which Variables (if any
will be created) are added.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see ${tf.Variable}).
Returns:
`Tensor` of shape [batch_size] + `_variable_shape`.
"""
pass
示例10: testListTensorFilterByOpTypeRegex
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testListTensorFilterByOpTypeRegex(self):
out = self._registry.dispatch_command("list_tensors",
["--op_type_filter", "Identity"])
assert_listed_tensors(
self,
out, ["simple_mul_add/u/read:0", "simple_mul_add/v/read:0"],
["Identity", "Identity"],
op_type_regex="Identity")
out = self._registry.dispatch_command("list_tensors",
["-t", "(Add|MatMul)"])
assert_listed_tensors(
self,
out, ["simple_mul_add/add:0", "simple_mul_add/matmul:0"],
["Add", "MatMul"],
op_type_regex="(Add|MatMul)")
check_main_menu(self, out, list_tensors_enabled=False)
示例11: testNodeInfoByNodeName
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testNodeInfoByNodeName(self):
node_name = "simple_mul_add/matmul"
out = self._registry.dispatch_command("node_info", [node_name])
recipients = [("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")]
assert_node_attribute_lines(self, out, node_name, "MatMul",
self._main_device,
[("Identity", "simple_mul_add/u/read"),
("Identity", "simple_mul_add/v/read")], [],
recipients, [])
check_main_menu(
self,
out,
list_tensors_enabled=True,
list_inputs_node_name=node_name,
print_tensor_node_name=node_name,
list_outputs_node_name=node_name)
# Verify that the node name is bold in the first line.
self.assertEqual(
[(len(out.lines[0]) - len(node_name), len(out.lines[0]), "bold")],
out.font_attr_segs[0])
示例12: testNodeInfoShowDumps
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testNodeInfoShowDumps(self):
node_name = "simple_mul_add/matmul"
out = self._registry.dispatch_command("node_info", ["-d", node_name])
assert_node_attribute_lines(
self,
out,
node_name,
"MatMul",
self._main_device, [("Identity", "simple_mul_add/u/read"),
("Identity", "simple_mul_add/v/read")], [],
[("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")], [],
num_dumped_tensors=1)
check_main_menu(
self,
out,
list_tensors_enabled=True,
list_inputs_node_name=node_name,
print_tensor_node_name=node_name,
list_outputs_node_name=node_name)
check_menu_item(self, out, 16,
len(out.lines[16]) - len(out.lines[16].strip()),
len(out.lines[16]), "pt %s:0 -n 0" % node_name)
示例13: testNodeInfoShowStackTraceUnavailableIsIndicated
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testNodeInfoShowStackTraceUnavailableIsIndicated(self):
self._debug_dump.set_python_graph(None)
node_name = "simple_mul_add/matmul"
out = self._registry.dispatch_command("node_info", ["-t", node_name])
assert_node_attribute_lines(
self,
out,
node_name,
"MatMul",
self._main_device, [("Identity", "simple_mul_add/u/read"),
("Identity", "simple_mul_add/v/read")], [],
[("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")], [],
show_stack_trace=True, stack_trace_available=False)
check_main_menu(
self,
out,
list_tensors_enabled=True,
list_inputs_node_name=node_name,
print_tensor_node_name=node_name,
list_outputs_node_name=node_name)
示例14: testNodeInfoShowStackTraceAvailableWorks
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testNodeInfoShowStackTraceAvailableWorks(self):
self._debug_dump.set_python_graph(self._sess.graph)
node_name = "simple_mul_add/matmul"
out = self._registry.dispatch_command("node_info", ["-t", node_name])
assert_node_attribute_lines(
self,
out,
node_name,
"MatMul",
self._main_device, [("Identity", "simple_mul_add/u/read"),
("Identity", "simple_mul_add/v/read")], [],
[("Add", "simple_mul_add/add"), ("Add", "simple_mul_add/add")], [],
show_stack_trace=True, stack_trace_available=True)
check_main_menu(
self,
out,
list_tensors_enabled=True,
list_inputs_node_name=node_name,
print_tensor_node_name=node_name,
list_outputs_node_name=node_name)
示例15: testNoOverwrite
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import add [as 別名]
def testNoOverwrite(self):
export_dir = os.path.join(test.get_temp_dir(), "test_no_overwrite")
builder = saved_model_builder.SavedModelBuilder(export_dir)
# Graph with a single variable. SavedModel invoked to:
# - add with weights.
with self.test_session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(sess, ["foo"])
# Save the SavedModel to disk in text format.
builder.save(as_text=True)
# Restore the graph with tag "foo", whose variables were saved.
with self.test_session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
self.assertEqual(
42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())
# An attempt to create another builder with the same export directory should
# result in an assertion error.
self.assertRaises(AssertionError, saved_model_builder.SavedModelBuilder,
export_dir)