本文整理匯總了Python中tensorflow.python.ops.math_ops.abs方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.abs方法的具體用法?Python math_ops.abs怎麽用?Python math_ops.abs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.abs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def __init__(self,
df,
loc,
scale,
validate_args=False,
allow_nan_stats=True,
name="StudentTWithAbsDfSoftplusScale"):
parameters = locals()
with ops.name_scope(name, values=[df, scale]):
super(StudentTWithAbsDfSoftplusScale, self).__init__(
df=math_ops.floor(math_ops.abs(df)),
loc=loc,
scale=nn.softplus(scale, name="softplus_scale"),
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=name)
self._parameters = parameters
示例2: _sample_n
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _sample_n(self, n, seed=None):
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
# Uniform variates must be sampled from the open-interval `(-1, 1)` rather
# than `[-1, 1)`. In the case of `(0, 1)` we'd use
# `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest,
# positive, "normal" number. However, the concept of subnormality exists
# only at zero; here we need the smallest usable number larger than -1,
# i.e., `-1 + eps/2`.
uniform_samples = random_ops.random_uniform(
shape=shape,
minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
self.dtype.as_numpy_dtype(0.)),
maxval=1.,
dtype=self.dtype,
seed=seed)
return (self.loc - self.scale * math_ops.sign(uniform_samples) *
math_ops.log1p(-math_ops.abs(uniform_samples)))
示例3: sqrt_log_abs_det
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def sqrt_log_abs_det(self):
"""Computes (log o abs o det)(X) for matrix X.
Doesn't actually do the sqrt! Named as such to agree with API.
To compute det(M + V D V.T), we use the matrix determinant lemma:
det(Tril + V D V.T) = det(C) det(D) det(M)
where C is defined as in `_inverse`, ie,
C = inv(D) + V.T inv(M) V.
See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma
Returns:
log_abs_det: `Tensor`.
"""
log_det_c = math_ops.log(math_ops.abs(
linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
# Reduction is ok because we always prepad inputs to this class.
log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
array_ops.matrix_diag_part(self._m))), axis=[-1])
return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m
示例4: _sqrt_log_det_core
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _sqrt_log_det_core(self, diag_chol_c):
"""Finish computation of Sqrt[Log[Det]]."""
# Complete computation of ._log_det and ._batch_log_det, after the initial
# Cholesky factor has been taken with the appropriate batch/non-batch method
# det(M + VDV^T) = det(D^{-1} + V^T M^{-1} V) * det(D) * det(M)
# = det(C) * det(D) * det(M)
# Multiply by 2 here because this is the log-det of the Cholesky factor of C
log_det_c = 2 * math_ops.reduce_sum(
math_ops.log(math_ops.abs(diag_chol_c)),
reduction_indices=[-1])
# Add together to get Log[det(M + VDV^T)], the Log-det of the updated square
# root.
log_det_updated_sqrt = (
log_det_c + self._diag_operator.log_det() + self._operator.log_det())
return log_det_updated_sqrt
示例5: test_log_abs_det
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def test_log_abs_det(self):
self._skip_if_tests_to_skip_contains("log_abs_det")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
if dtype.is_complex:
self.skipTest(
"tf.matrix_determinant does not work with complex, so this "
"test is being skipped.")
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_log_abs_det = operator.log_abs_determinant()
mat_log_abs_det = math_ops.log(
math_ops.abs(linalg_ops.matrix_determinant(mat)))
if not use_placeholder:
self.assertAllEqual(shape[:-2], op_log_abs_det.get_shape())
op_log_abs_det_v, mat_log_abs_det_v = sess.run(
[op_log_abs_det, mat_log_abs_det],
feed_dict=feed_dict)
self.assertAC(op_log_abs_det_v, mat_log_abs_det_v)
示例6: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def __init__(self,
df,
mu,
sigma,
validate_args=False,
allow_nan_stats=True,
name="StudentTWithAbsDfSoftplusSigma"):
parameters = locals()
parameters.pop("self")
with ops.name_scope(name, values=[df, sigma]) as ns:
super(StudentTWithAbsDfSoftplusSigma, self).__init__(
df=math_ops.floor(math_ops.abs(df)),
mu=mu,
sigma=nn.softplus(sigma, name="softplus_sigma"),
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=ns)
self._parameters = parameters
示例7: sqrt_log_abs_det
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def sqrt_log_abs_det(self):
"""Computes (log o abs o det)(X) for matrix X.
Doesn't actually do the sqrt! Named as such to agree with API.
To compute det(M + V D V.T), we use the matrix determinant lemma:
det(Tril + V D V.T) = det(C) det(D) det(M)
where C is defined as in `_inverse`, ie,
C = inv(D) + V.T inv(M) V.
See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma
Returns:
log_abs_det: `Tensor`.
"""
log_det_c = math_ops.log(math_ops.abs(
linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
# Reduction is ok because we always prepad inputs to this class.
log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
array_ops.matrix_diag_part(self._m))), reduction_indices=[-1])
return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m
示例8: assert_no_entries_with_modulus_zero
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def assert_no_entries_with_modulus_zero(
x, message=None, name="assert_no_entries_with_modulus_zero"):
"""Returns `Op` that asserts Tensor `x` has no entries with modulus zero.
Args:
x: Numeric `Tensor`, real, integer, or complex.
message: A string message to prepend to failure message.
name: A name to give this `Op`.
Returns:
An `Op` that asserts `x` has no entries with modulus zero.
"""
with ops.name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
dtype = x.dtype.base_dtype
should_be_nonzero = math_ops.abs(x)
zero = ops.convert_to_tensor(0, dtype=dtype.real_dtype)
return check_ops.assert_less(zero, should_be_nonzero, message=message)
示例9: testNoGlobalStep
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def testNoGlobalStep(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g) as session:
x = array_ops.placeholder(dtypes.float32, [])
var = variable_scope.get_variable(
"test", [], initializer=init_ops.constant_initializer(10))
loss = math_ops.abs(var * x)
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
train = optimizers_lib.optimize_loss(
loss,
global_step=None,
learning_rate=0.1,
optimizer=optimizer,
update_ops=[update_op])
variables.global_variables_initializer().run()
session.run(train, feed_dict={x: 5})
self.assertEqual(9.5, var.eval())
self.assertEqual(20, update_var.eval())
示例10: testNoGlobalStepWithDecay
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def testNoGlobalStepWithDecay(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g):
x = array_ops.placeholder(dtypes.float32, [])
var = variable_scope.get_variable(
"test", [], initializer=init_ops.constant_initializer(10))
loss = math_ops.abs(var * x)
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
with self.assertRaisesRegexp(
ValueError, "global_step is required for learning_rate_decay_fn"):
optimizers_lib.optimize_loss(
loss,
global_step=None,
learning_rate=0.1,
learning_rate_decay_fn=_no_op_learning_rate_decay_fn,
optimizer=optimizer,
update_ops=[update_op])
示例11: _huber_loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _huber_loss(labels, predictions, config):
""" Huber loss tensor"""
delta = config.huber_delta
predictions = math_ops.to_float(predictions)
labels = math_ops.to_float(labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
error = math_ops.subtract(predictions, labels)
abs_error = math_ops.abs(error)
quadratic = math_ops.minimum(abs_error, delta)
# The following expression is the same in value as
# tf.maximum(abs_error - delta, 0), but importantly the gradient for the
# expression when abs_error == delta is 0 (for tf.maximum it would be 1).
# This is necessary to avoid doubling the gradient, since there is already a
# nonzero contribution to the gradient from the quadratic term.
linear = math_ops.subtract(abs_error, quadratic)
losses = math_ops.add(
math_ops.multiply(
ops.convert_to_tensor(0.5, dtype=quadratic.dtype),
math_ops.multiply(quadratic, quadratic)),
math_ops.multiply(delta, linear))
return losses
示例12: assert_close
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def assert_close(
x, y, data=None, summarize=None, message=None, name="assert_close"):
"""Assert that that x and y are within machine epsilon of each other.
Args:
x: Floating-point `Tensor`
y: Floating-point `Tensor`
data: The tensors to print out if the condition is `False`. Defaults to
error message and first few entries of `x` and `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional).
Returns:
Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
"""
message = message or ""
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y")
if data is None:
data = [
message,
"Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
y.name, y
]
if x.dtype.is_integer:
return check_ops.assert_equal(
x, y, data=data, summarize=summarize, message=message, name=name)
with ops.name_scope(name, "assert_close", [x, y, data]):
tol = np.finfo(x.dtype.as_numpy_dtype).eps
condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
return control_flow_ops.Assert(
condition, data, summarize=summarize)
示例13: _log_normalization
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _log_normalization(self):
return (math_ops.log(math_ops.abs(self.scale)) +
0.5 * math_ops.log(self.df) +
0.5 * np.log(np.pi) +
math_ops.lgamma(0.5 * self.df) -
math_ops.lgamma(0.5 * (self.df + 1.)))
示例14: _cdf
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _cdf(self, x):
# Take Abs(scale) to make subsequent where work correctly.
y = (x - self.loc) / math_ops.abs(self.scale)
x_t = self.df / (y**2. + self.df)
neg_cdf = 0.5 * math_ops.betainc(0.5 * self.df, 0.5, x_t)
return array_ops.where(math_ops.less(y, 0.), neg_cdf, 1. - neg_cdf)
示例15: _ndtr
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _ndtr(x):
"""Implements ndtr core logic."""
half_sqrt_2 = constant_op.constant(
0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2")
w = x * half_sqrt_2
z = math_ops.abs(w)
y = array_ops.where(math_ops.less(z, half_sqrt_2),
1. + math_ops.erf(w),
array_ops.where(math_ops.greater(w, 0.),
2. - math_ops.erfc(z),
math_ops.erfc(z)))
return 0.5 * y