當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.abs方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.abs方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.abs方法的具體用法?Python math_ops.abs怎麽用?Python math_ops.abs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.abs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def __init__(self,
               df,
               loc,
               scale,
               validate_args=False,
               allow_nan_stats=True,
               name="StudentTWithAbsDfSoftplusScale"):
    parameters = locals()
    with ops.name_scope(name, values=[df, scale]):
      super(StudentTWithAbsDfSoftplusScale, self).__init__(
          df=math_ops.floor(math_ops.abs(df)),
          loc=loc,
          scale=nn.softplus(scale, name="softplus_scale"),
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          name=name)
    self._parameters = parameters 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:student_t.py

示例2: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    # Uniform variates must be sampled from the open-interval `(-1, 1)` rather
    # than `[-1, 1)`. In the case of `(0, 1)` we'd use
    # `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest,
    # positive, "normal" number. However, the concept of subnormality exists
    # only at zero; here we need the smallest usable number larger than -1,
    # i.e., `-1 + eps/2`.
    uniform_samples = random_ops.random_uniform(
        shape=shape,
        minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                            self.dtype.as_numpy_dtype(0.)),
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    return (self.loc - self.scale * math_ops.sign(uniform_samples) *
            math_ops.log1p(-math_ops.abs(uniform_samples))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:laplace.py

示例3: sqrt_log_abs_det

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def sqrt_log_abs_det(self):
    """Computes (log o abs o det)(X) for matrix X.

    Doesn't actually do the sqrt! Named as such to agree with API.

    To compute det(M + V D V.T), we use the matrix determinant lemma:
      det(Tril + V D V.T) = det(C) det(D) det(M)
    where C is defined as in `_inverse`, ie,
      C = inv(D) + V.T inv(M) V.

    See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma

    Returns:
      log_abs_det: `Tensor`.
    """
    log_det_c = math_ops.log(math_ops.abs(
        linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
    # Reduction is ok because we always prepad inputs to this class.
    log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
        array_ops.matrix_diag_part(self._m))), axis=[-1])
    return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:affine_impl.py

示例4: _sqrt_log_det_core

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _sqrt_log_det_core(self, diag_chol_c):
    """Finish computation of Sqrt[Log[Det]]."""
    # Complete computation of ._log_det and ._batch_log_det, after the initial
    # Cholesky factor has been taken with the appropriate batch/non-batch method

    # det(M + VDV^T) = det(D^{-1} + V^T M^{-1} V) * det(D) * det(M)
    #                = det(C) * det(D) * det(M)
    # Multiply by 2 here because this is the log-det of the Cholesky factor of C
    log_det_c = 2 * math_ops.reduce_sum(
        math_ops.log(math_ops.abs(diag_chol_c)),
        reduction_indices=[-1])
    # Add together to get Log[det(M + VDV^T)], the Log-det of the updated square
    # root.
    log_det_updated_sqrt = (
        log_det_c + self._diag_operator.log_det() + self._operator.log_det())
    return log_det_updated_sqrt 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:operator_pd_vdvt_update.py

示例5: test_log_abs_det

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def test_log_abs_det(self):
    self._skip_if_tests_to_skip_contains("log_abs_det")
    for use_placeholder in False, True:
      for shape in self._shapes_to_test:
        for dtype in self._dtypes_to_test:
          if dtype.is_complex:
            self.skipTest(
                "tf.matrix_determinant does not work with complex, so this "
                "test is being skipped.")
          with self.test_session(graph=ops.Graph()) as sess:
            sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
            operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
                shape, dtype, use_placeholder=use_placeholder)
            op_log_abs_det = operator.log_abs_determinant()
            mat_log_abs_det = math_ops.log(
                math_ops.abs(linalg_ops.matrix_determinant(mat)))
            if not use_placeholder:
              self.assertAllEqual(shape[:-2], op_log_abs_det.get_shape())
            op_log_abs_det_v, mat_log_abs_det_v = sess.run(
                [op_log_abs_det, mat_log_abs_det],
                feed_dict=feed_dict)
            self.assertAC(op_log_abs_det_v, mat_log_abs_det_v) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:linear_operator_test_util.py

示例6: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def __init__(self,
               df,
               mu,
               sigma,
               validate_args=False,
               allow_nan_stats=True,
               name="StudentTWithAbsDfSoftplusSigma"):
    parameters = locals()
    parameters.pop("self")
    with ops.name_scope(name, values=[df, sigma]) as ns:
      super(StudentTWithAbsDfSoftplusSigma, self).__init__(
          df=math_ops.floor(math_ops.abs(df)),
          mu=mu,
          sigma=nn.softplus(sigma, name="softplus_sigma"),
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          name=ns)
    self._parameters = parameters 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:student_t.py

示例7: sqrt_log_abs_det

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def sqrt_log_abs_det(self):
    """Computes (log o abs o det)(X) for matrix X.

    Doesn't actually do the sqrt! Named as such to agree with API.

    To compute det(M + V D V.T), we use the matrix determinant lemma:
      det(Tril + V D V.T) = det(C) det(D) det(M)
    where C is defined as in `_inverse`, ie,
      C = inv(D) + V.T inv(M) V.

    See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma

    Returns:
      log_abs_det: `Tensor`.
    """
    log_det_c = math_ops.log(math_ops.abs(
        linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
    # Reduction is ok because we always prepad inputs to this class.
    log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
        array_ops.matrix_diag_part(self._m))), reduction_indices=[-1])
    return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:23,代碼來源:bijector.py

示例8: assert_no_entries_with_modulus_zero

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def assert_no_entries_with_modulus_zero(
    x, message=None, name="assert_no_entries_with_modulus_zero"):
  """Returns `Op` that asserts Tensor `x` has no entries with modulus zero.

  Args:
    x:  Numeric `Tensor`, real, integer, or complex.
    message:  A string message to prepend to failure message.
    name:  A name to give this `Op`.

  Returns:
    An `Op` that asserts `x` has no entries with modulus zero.
  """
  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    dtype = x.dtype.base_dtype
    should_be_nonzero = math_ops.abs(x)
    zero = ops.convert_to_tensor(0, dtype=dtype.real_dtype)
    return check_ops.assert_less(zero, should_be_nonzero, message=message) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:linear_operator_util.py

示例9: testNoGlobalStep

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def testNoGlobalStep(self):
    optimizers = [
        "SGD", gradient_descent.GradientDescentOptimizer,
        gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
    ]
    for optimizer in optimizers:
      with ops.Graph().as_default() as g, self.session(graph=g) as session:
        x = array_ops.placeholder(dtypes.float32, [])
        var = variable_scope.get_variable(
            "test", [], initializer=init_ops.constant_initializer(10))
        loss = math_ops.abs(var * x)
        update_var = variable_scope.get_variable(
            "update", [], initializer=init_ops.constant_initializer(10))
        update_op = state_ops.assign(update_var, 20)
        train = optimizers_lib.optimize_loss(
            loss,
            global_step=None,
            learning_rate=0.1,
            optimizer=optimizer,
            update_ops=[update_op])
        variables.global_variables_initializer().run()
        session.run(train, feed_dict={x: 5})
        self.assertEqual(9.5, var.eval())
        self.assertEqual(20, update_var.eval()) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:26,代碼來源:optimizers_test.py

示例10: testNoGlobalStepWithDecay

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def testNoGlobalStepWithDecay(self):
    optimizers = [
        "SGD", gradient_descent.GradientDescentOptimizer,
        gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
    ]
    for optimizer in optimizers:
      with ops.Graph().as_default() as g, self.session(graph=g):
        x = array_ops.placeholder(dtypes.float32, [])
        var = variable_scope.get_variable(
            "test", [], initializer=init_ops.constant_initializer(10))
        loss = math_ops.abs(var * x)
        update_var = variable_scope.get_variable(
            "update", [], initializer=init_ops.constant_initializer(10))
        update_op = state_ops.assign(update_var, 20)
        with self.assertRaisesRegexp(
            ValueError, "global_step is required for learning_rate_decay_fn"):
          optimizers_lib.optimize_loss(
              loss,
              global_step=None,
              learning_rate=0.1,
              learning_rate_decay_fn=_no_op_learning_rate_decay_fn,
              optimizer=optimizer,
              update_ops=[update_op]) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:25,代碼來源:optimizers_test.py

示例11: _huber_loss

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _huber_loss(labels, predictions, config):
        """ Huber loss tensor"""
        delta = config.huber_delta
        predictions = math_ops.to_float(predictions)
        labels = math_ops.to_float(labels)
        predictions.get_shape().assert_is_compatible_with(labels.get_shape())
        error = math_ops.subtract(predictions, labels)
        abs_error = math_ops.abs(error)
        quadratic = math_ops.minimum(abs_error, delta)
        # The following expression is the same in value as
        # tf.maximum(abs_error - delta, 0), but importantly the gradient for the
        # expression when abs_error == delta is 0 (for tf.maximum it would be 1).
        # This is necessary to avoid doubling the gradient, since there is already a
        # nonzero contribution to the gradient from the quadratic term.
        linear = math_ops.subtract(abs_error, quadratic)
        losses = math_ops.add(
            math_ops.multiply(
                ops.convert_to_tensor(0.5, dtype=quadratic.dtype),
                math_ops.multiply(quadratic, quadratic)),
            math_ops.multiply(delta, linear))
        return losses 
開發者ID:euclidjda,項目名稱:deep-quant,代碼行數:23,代碼來源:deep_mlp_uq_model.py

示例12: assert_close

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def assert_close(
    x, y, data=None, summarize=None, message=None, name="assert_close"):
  """Assert that that x and y are within machine epsilon of each other.

  Args:
    x: Floating-point `Tensor`
    y: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
  """
  message = message or ""
  x = ops.convert_to_tensor(x, name="x")
  y = ops.convert_to_tensor(y, name="y")

  if data is None:
    data = [
        message,
        "Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
        y.name, y
    ]

  if x.dtype.is_integer:
    return check_ops.assert_equal(
        x, y, data=data, summarize=summarize, message=message, name=name)

  with ops.name_scope(name, "assert_close", [x, y, data]):
    tol = np.finfo(x.dtype.as_numpy_dtype).eps
    condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
    return control_flow_ops.Assert(
        condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:util.py

示例13: _log_normalization

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _log_normalization(self):
    return (math_ops.log(math_ops.abs(self.scale)) +
            0.5 * math_ops.log(self.df) +
            0.5 * np.log(np.pi) +
            math_ops.lgamma(0.5 * self.df) -
            math_ops.lgamma(0.5 * (self.df + 1.))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:student_t.py

示例14: _cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _cdf(self, x):
    # Take Abs(scale) to make subsequent where work correctly.
    y = (x - self.loc) / math_ops.abs(self.scale)
    x_t = self.df / (y**2. + self.df)
    neg_cdf = 0.5 * math_ops.betainc(0.5 * self.df, 0.5, x_t)
    return array_ops.where(math_ops.less(y, 0.), neg_cdf, 1. - neg_cdf) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:student_t.py

示例15: _ndtr

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import abs [as 別名]
def _ndtr(x):
  """Implements ndtr core logic."""
  half_sqrt_2 = constant_op.constant(
      0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2")
  w = x * half_sqrt_2
  z = math_ops.abs(w)
  y = array_ops.where(math_ops.less(z, half_sqrt_2),
                      1. + math_ops.erf(w),
                      array_ops.where(math_ops.greater(w, 0.),
                                      2. - math_ops.erfc(z),
                                      math_ops.erfc(z)))
  return 0.5 * y 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:special_math.py


注:本文中的tensorflow.python.ops.math_ops.abs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。