當前位置: 首頁>>代碼示例>>Python>>正文


Python lookup_ops.tables_initializer方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.lookup_ops.tables_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python lookup_ops.tables_initializer方法的具體用法?Python lookup_ops.tables_initializer怎麽用?Python lookup_ops.tables_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.lookup_ops的用法示例。


在下文中一共展示了lookup_ops.tables_initializer方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _init_local_init_op

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
    """Initializes local_init_op.

    Args:
      local_init_op: `Operation` run for every new supervisor instance. If set
      to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
      collection. If the collection is empty, create an op that initializes
      all local variables and all tables.
    """
    if local_init_op is Supervisor.USE_DEFAULT:
      local_init_op = self._get_first_op_from_collection(
          ops.GraphKeys.LOCAL_INIT_OP)
      if local_init_op is None:
        op_list = [
            variables.local_variables_initializer(),
            lookup_ops.tables_initializer()
        ]
        if op_list:
          local_init_op = control_flow_ops.group(*op_list)
          ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
    self._local_init_op = local_init_op 
開發者ID:yuantailing,項目名稱:ctw-baseline,代碼行數:23,代碼來源:supervisor.py

示例2: main_op

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def main_op():
  """Returns a main op to init variables and tables.

  Returns the main op including the group of ops that initializes all
  variables, initializes local variables and initialize all tables.

  Returns:
    The set of ops to be run as part of the main op upon the load operation.
  """
  init = variables.global_variables_initializer()
  init_local = variables.local_variables_initializer()
  init_tables = lookup_ops.tables_initializer()
  return control_flow_ops.group(init, init_local, init_tables)


# TODO(sukritiramesh): Integrate with Saver for complete restore functionality. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:main_op_impl.py

示例3: _export_graph

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
                  default_graph_signature, named_graph_signatures,
                  exports_to_keep):
  """Exports graph via session_bundle, by creating a Session."""
  with graph.as_default():
    with tf_session.Session('') as session:
      variables.local_variables_initializer()
      lookup_ops.tables_initializer()
      saver.restore(session, checkpoint_path)

      export = exporter.Exporter(saver)
      export.init(
          init_op=control_flow_ops.group(
              variables.local_variables_initializer(),
              lookup_ops.tables_initializer()),
          default_graph_signature=default_graph_signature,
          named_graph_signatures=named_graph_signatures,
          assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS))
      return export.export(export_dir, contrib_variables.get_global_step(),
                           session, exports_to_keep=exports_to_keep) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:export.py

示例4: testTokenize

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testTokenize(self,
                   text_input,
                   expected_tokens,
                   expected_starts,
                   expected_ends):
    hub_module_handle = ("tensorflow_text/python/ops/test_data/"
                         "segmenter_hub_module")
    segmenter = hub_module_tokenizer.HubModuleTokenizer(hub_module_handle)
    tokens, starts, ends = segmenter.tokenize_with_offsets(text_input)
    tokens_no_offset = segmenter.tokenize(text_input)
    self.evaluate(lookup_ops.tables_initializer())
    self.evaluate(variables_lib.global_variables_initializer())
    self.assertAllEqual(expected_tokens, tokens)
    self.assertAllEqual(expected_starts, starts)
    self.assertAllEqual(expected_ends, ends)
    self.assertAllEqual(expected_tokens, tokens_no_offset) 
開發者ID:tensorflow,項目名稱:text,代碼行數:18,代碼來源:hub_module_tokenizer_test.py

示例5: test_linear_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def test_linear_model(self):
    wire_column = fc.categorical_column_with_hash_bucket('wire', 4)
    self.assertEqual(4, wire_column.num_buckets)
    with ops.Graph().as_default():
      model = linear.LinearModel((wire_column,))
      predictions = model({
          wire_column.name:
              sparse_tensor.SparseTensorValue(
                  indices=((0, 0), (1, 0), (1, 1)),
                  values=('marlo', 'skywalker', 'omar'),
                  dense_shape=(2, 2))
      })
      wire_var, bias = model.variables

      self.evaluate(variables_lib.global_variables_initializer())
      self.evaluate(lookup_ops.tables_initializer())

      self.assertAllClose((0.,), self.evaluate(bias))
      self.assertAllClose(((0.,), (0.,), (0.,), (0.,)), self.evaluate(wire_var))
      self.assertAllClose(((0.,), (0.,)), self.evaluate(predictions))
      self.evaluate(wire_var.assign(((1.,), (2.,), (3.,), (4.,))))
      # 'marlo' -> 3: wire_var[3] = 4
      # 'skywalker' -> 2, 'omar' -> 2: wire_var[2] + wire_var[2] = 3+3 = 6
      self.assertAllClose(((4.,), (6.,)), self.evaluate(predictions)) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:26,代碼來源:linear_model_test.py

示例6: _run_eval

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _run_eval(self):
        """Run model evaluation and generate summaries."""
        coord = tf.train.Coordinator(clean_stop_exception_types=(
            tf.errors.CancelledError, tf.errors.OutOfRangeError))

        with tf.Session(graph=self._graph) as session:
            # Restores previously saved variables from latest checkpoint
            self._saver.restore(session, self._latest_checkpoint)

            session.run([
                tf.tables_initializer(),
                tf.local_variables_initializer()])
            tf.train.start_queue_runners(coord=coord, sess=session)
            train_step = session.run(self._gs)

            tf.logging.info(
                'Starting Evaluation For Step: {}'.format(train_step))
            with coord.stop_on_exception():
                eval_step = 0
                while not coord.should_stop() and (self._eval_steps is None or
                                                   eval_step <
                                                   self._eval_steps):
                    summaries, final_values, _ = session.run(
                        [self._summary_op, self._final_ops_dict,
                         self._eval_ops])
                    if eval_step % 100 == 0:
                        tf.logging.info(
                            'On Evaluation Step: {}'.format(eval_step))
                    eval_step += 1

            # Write the summaries
            self._file_writer.add_summary(summaries, global_step=train_step)
            self._file_writer.flush()
            tf.logging.info(final_values) 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:36,代碼來源:task.py

示例7: main_op

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def main_op():
    init_local = variables.local_variables_initializer()
    init_tables = lookup_ops.tables_initializer()
    return control_flow_ops.group(init_local, init_tables) 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:6,代碼來源:task.py

示例8: _default_local_init_op

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _default_local_init_op():
    return control_flow_ops.group(variables.local_variables_initializer(),
                                  lookup_ops.tables_initializer()) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:monitored_session.py

示例9: _get_local_init_op

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _get_local_init_op():
  """Returns the local init ops to initialize tables and local variables."""
  local_init_op = _get_first_op_from_collection(
      ops.GraphKeys.LOCAL_INIT_OP)
  if local_init_op is None:
    op_list = [
        variables.local_variables_initializer(),
        lookup_ops.tables_initializer()
    ]
    if op_list:
      local_init_op = control_flow_ops.group(*op_list)
      ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
  return local_init_op 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:15,代碼來源:graph_actions.py

示例10: testDecodeExampleWithBranchedLookup

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeExampleWithBranchedLookup(self):

    example = example_pb2.Example(features=feature_pb2.Features(feature={
        'image/object/class/text': self._BytesFeatureFromList(
            np.array(['cat', 'dog', 'guinea pig'])),
    }))
    serialized_example = example.SerializeToString()
    # 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2
    table = lookup_ops.index_table_from_tensor(
        constant_op.constant(['dog', 'guinea pig', 'cat']))

    with self.test_session() as sess:
      sess.run(lookup_ops.tables_initializer())

      serialized_example = array_ops.reshape(serialized_example, shape=[])

      keys_to_features = {
          'image/object/class/text': parsing_ops.VarLenFeature(dtypes.string),
      }

      items_to_handlers = {
          'labels':
              tf_example_decoder.LookupTensor('image/object/class/text', table),
      }

      decoder = slim_example_decoder.TFExampleDecoder(keys_to_features,
                                                      items_to_handlers)
      obtained_class_ids = decoder.decode(serialized_example)[0].eval()

    self.assertAllClose([2, 0, 1], obtained_class_ids) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:32,代碼來源:tf_example_decoder_test.py

示例11: testDecodeObjectLabelNoText

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeObjectLabelNoText(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    bbox_classes = [1, 2]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/class/label': self._Int64Feature(bbox_classes),
    })).SerializeToString()
    label_map_string = """
      item {
        id:1
        name:'cat'
      }
      item {
        id:2
        name:'dog'
      }
    """
    label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
    with tf.gfile.Open(label_map_path, 'wb') as f:
      f.write(label_map_string)

    example_decoder = tf_example_decoder.TfExampleDecoder(
        label_map_proto_file=label_map_path)
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_classes].get_shape().as_list()),
                        [None])

    init = tf.tables_initializer()
    with self.test_session() as sess:
      sess.run(init)
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(bbox_classes,
                        tensor_dict[fields.InputDataFields.groundtruth_classes]) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:40,代碼來源:tf_example_decoder_test.py

示例12: testDecodeObjectLabelUnrecognizedName

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeObjectLabelUnrecognizedName(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    bbox_classes_text = ['cat', 'cheetah']
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded':
                    self._BytesFeature(encoded_jpeg),
                'image/format':
                    self._BytesFeature('jpeg'),
                'image/object/class/text':
                    self._BytesFeature(bbox_classes_text),
            })).SerializeToString()

    label_map_string = """
      item {
        id:2
        name:'cat'
      }
      item {
        id:1
        name:'dog'
      }
    """
    label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
    with tf.gfile.Open(label_map_path, 'wb') as f:
      f.write(label_map_string)
    example_decoder = tf_example_decoder.TfExampleDecoder(
        label_map_proto_file=label_map_path)
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
                         .get_shape().as_list()), [None])

    with self.test_session() as sess:
      sess.run(tf.tables_initializer())
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([2, -1],
                        tensor_dict[fields.InputDataFields.groundtruth_classes]) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:43,代碼來源:tf_example_decoder_test.py

示例13: testDecodeObjectLabelWithMapping

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeObjectLabelWithMapping(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    bbox_classes_text = ['cat', 'dog']
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded':
                    self._BytesFeature(encoded_jpeg),
                'image/format':
                    self._BytesFeature('jpeg'),
                'image/object/class/text':
                    self._BytesFeature(bbox_classes_text),
            })).SerializeToString()

    label_map_string = """
      item {
        id:3
        name:'cat'
      }
      item {
        id:1
        name:'dog'
      }
    """
    label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
    with tf.gfile.Open(label_map_path, 'wb') as f:
      f.write(label_map_string)
    example_decoder = tf_example_decoder.TfExampleDecoder(
        label_map_proto_file=label_map_path)
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
                         .get_shape().as_list()), [None])

    with self.test_session() as sess:
      sess.run(tf.tables_initializer())
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([3, 1],
                        tensor_dict[fields.InputDataFields.groundtruth_classes]) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:43,代碼來源:tf_example_decoder_test.py

示例14: testDecodeExampleWithLookup

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeExampleWithLookup(self):

    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/object/class/text':
                    self._BytesFeature(np.array(['cat', 'dog', 'guinea pig'])),
            }))
    serialized_example = example.SerializeToString()
    # 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2
    table = lookup_ops.index_table_from_tensor(
        tf.constant(['dog', 'guinea pig', 'cat']))

    with self.cached_session() as sess:
      sess.run(lookup_ops.tables_initializer())

      serialized_example = array_ops.reshape(serialized_example, shape=[])

      keys_to_features = {
          'image/object/class/text': parsing_ops.VarLenFeature(tf.string),
      }

      items_to_handlers = {
          'labels':
              tfexample_decoder.LookupTensor('image/object/class/text', table),
      }

      decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                   items_to_handlers)
      obtained_class_ids = decoder.decode(serialized_example)[0].eval()

    self.assertAllClose([2, 0, 1], obtained_class_ids) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:34,代碼來源:tfexample_decoder_test.py


注:本文中的tensorflow.python.ops.lookup_ops.tables_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。