本文整理匯總了Python中tensorflow.python.ops.lookup_ops.tables_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python lookup_ops.tables_initializer方法的具體用法?Python lookup_ops.tables_initializer怎麽用?Python lookup_ops.tables_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.lookup_ops
的用法示例。
在下文中一共展示了lookup_ops.tables_initializer方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _init_local_init_op
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
collection. If the collection is empty, create an op that initializes
all local variables and all tables.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(
ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [
variables.local_variables_initializer(),
lookup_ops.tables_initializer()
]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
示例2: main_op
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def main_op():
"""Returns a main op to init variables and tables.
Returns the main op including the group of ops that initializes all
variables, initializes local variables and initialize all tables.
Returns:
The set of ops to be run as part of the main op upon the load operation.
"""
init = variables.global_variables_initializer()
init_local = variables.local_variables_initializer()
init_tables = lookup_ops.tables_initializer()
return control_flow_ops.group(init, init_local, init_tables)
# TODO(sukritiramesh): Integrate with Saver for complete restore functionality.
示例3: _export_graph
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.local_variables_initializer()
lookup_ops.tables_initializer()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(
init_op=control_flow_ops.group(
variables.local_variables_initializer(),
lookup_ops.tables_initializer()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures,
assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS))
return export.export(export_dir, contrib_variables.get_global_step(),
session, exports_to_keep=exports_to_keep)
示例4: testTokenize
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testTokenize(self,
text_input,
expected_tokens,
expected_starts,
expected_ends):
hub_module_handle = ("tensorflow_text/python/ops/test_data/"
"segmenter_hub_module")
segmenter = hub_module_tokenizer.HubModuleTokenizer(hub_module_handle)
tokens, starts, ends = segmenter.tokenize_with_offsets(text_input)
tokens_no_offset = segmenter.tokenize(text_input)
self.evaluate(lookup_ops.tables_initializer())
self.evaluate(variables_lib.global_variables_initializer())
self.assertAllEqual(expected_tokens, tokens)
self.assertAllEqual(expected_starts, starts)
self.assertAllEqual(expected_ends, ends)
self.assertAllEqual(expected_tokens, tokens_no_offset)
示例5: test_linear_model
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def test_linear_model(self):
wire_column = fc.categorical_column_with_hash_bucket('wire', 4)
self.assertEqual(4, wire_column.num_buckets)
with ops.Graph().as_default():
model = linear.LinearModel((wire_column,))
predictions = model({
wire_column.name:
sparse_tensor.SparseTensorValue(
indices=((0, 0), (1, 0), (1, 1)),
values=('marlo', 'skywalker', 'omar'),
dense_shape=(2, 2))
})
wire_var, bias = model.variables
self.evaluate(variables_lib.global_variables_initializer())
self.evaluate(lookup_ops.tables_initializer())
self.assertAllClose((0.,), self.evaluate(bias))
self.assertAllClose(((0.,), (0.,), (0.,), (0.,)), self.evaluate(wire_var))
self.assertAllClose(((0.,), (0.,)), self.evaluate(predictions))
self.evaluate(wire_var.assign(((1.,), (2.,), (3.,), (4.,))))
# 'marlo' -> 3: wire_var[3] = 4
# 'skywalker' -> 2, 'omar' -> 2: wire_var[2] + wire_var[2] = 3+3 = 6
self.assertAllClose(((4.,), (6.,)), self.evaluate(predictions))
示例6: _run_eval
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _run_eval(self):
"""Run model evaluation and generate summaries."""
coord = tf.train.Coordinator(clean_stop_exception_types=(
tf.errors.CancelledError, tf.errors.OutOfRangeError))
with tf.Session(graph=self._graph) as session:
# Restores previously saved variables from latest checkpoint
self._saver.restore(session, self._latest_checkpoint)
session.run([
tf.tables_initializer(),
tf.local_variables_initializer()])
tf.train.start_queue_runners(coord=coord, sess=session)
train_step = session.run(self._gs)
tf.logging.info(
'Starting Evaluation For Step: {}'.format(train_step))
with coord.stop_on_exception():
eval_step = 0
while not coord.should_stop() and (self._eval_steps is None or
eval_step <
self._eval_steps):
summaries, final_values, _ = session.run(
[self._summary_op, self._final_ops_dict,
self._eval_ops])
if eval_step % 100 == 0:
tf.logging.info(
'On Evaluation Step: {}'.format(eval_step))
eval_step += 1
# Write the summaries
self._file_writer.add_summary(summaries, global_step=train_step)
self._file_writer.flush()
tf.logging.info(final_values)
示例7: main_op
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def main_op():
init_local = variables.local_variables_initializer()
init_tables = lookup_ops.tables_initializer()
return control_flow_ops.group(init_local, init_tables)
示例8: _default_local_init_op
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _default_local_init_op():
return control_flow_ops.group(variables.local_variables_initializer(),
lookup_ops.tables_initializer())
示例9: _get_local_init_op
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def _get_local_init_op():
"""Returns the local init ops to initialize tables and local variables."""
local_init_op = _get_first_op_from_collection(
ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [
variables.local_variables_initializer(),
lookup_ops.tables_initializer()
]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
return local_init_op
示例10: testDecodeExampleWithBranchedLookup
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeExampleWithBranchedLookup(self):
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/object/class/text': self._BytesFeatureFromList(
np.array(['cat', 'dog', 'guinea pig'])),
}))
serialized_example = example.SerializeToString()
# 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2
table = lookup_ops.index_table_from_tensor(
constant_op.constant(['dog', 'guinea pig', 'cat']))
with self.test_session() as sess:
sess.run(lookup_ops.tables_initializer())
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image/object/class/text': parsing_ops.VarLenFeature(dtypes.string),
}
items_to_handlers = {
'labels':
tf_example_decoder.LookupTensor('image/object/class/text', table),
}
decoder = slim_example_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
obtained_class_ids = decoder.decode(serialized_example)[0].eval()
self.assertAllClose([2, 0, 1], obtained_class_ids)
示例11: testDecodeObjectLabelNoText
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeObjectLabelNoText(self):
image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
bbox_classes = [1, 2]
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/format': self._BytesFeature('jpeg'),
'image/object/class/label': self._Int64Feature(bbox_classes),
})).SerializeToString()
label_map_string = """
item {
id:1
name:'cat'
}
item {
id:2
name:'dog'
}
"""
label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
with tf.gfile.Open(label_map_path, 'wb') as f:
f.write(label_map_string)
example_decoder = tf_example_decoder.TfExampleDecoder(
label_map_proto_file=label_map_path)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[
fields.InputDataFields.groundtruth_classes].get_shape().as_list()),
[None])
init = tf.tables_initializer()
with self.test_session() as sess:
sess.run(init)
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(bbox_classes,
tensor_dict[fields.InputDataFields.groundtruth_classes])
示例12: testDecodeObjectLabelUnrecognizedName
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeObjectLabelUnrecognizedName(self):
image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
bbox_classes_text = ['cat', 'cheetah']
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
self._BytesFeature(encoded_jpeg),
'image/format':
self._BytesFeature('jpeg'),
'image/object/class/text':
self._BytesFeature(bbox_classes_text),
})).SerializeToString()
label_map_string = """
item {
id:2
name:'cat'
}
item {
id:1
name:'dog'
}
"""
label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
with tf.gfile.Open(label_map_path, 'wb') as f:
f.write(label_map_string)
example_decoder = tf_example_decoder.TfExampleDecoder(
label_map_proto_file=label_map_path)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
.get_shape().as_list()), [None])
with self.test_session() as sess:
sess.run(tf.tables_initializer())
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual([2, -1],
tensor_dict[fields.InputDataFields.groundtruth_classes])
示例13: testDecodeObjectLabelWithMapping
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeObjectLabelWithMapping(self):
image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
bbox_classes_text = ['cat', 'dog']
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
self._BytesFeature(encoded_jpeg),
'image/format':
self._BytesFeature('jpeg'),
'image/object/class/text':
self._BytesFeature(bbox_classes_text),
})).SerializeToString()
label_map_string = """
item {
id:3
name:'cat'
}
item {
id:1
name:'dog'
}
"""
label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
with tf.gfile.Open(label_map_path, 'wb') as f:
f.write(label_map_string)
example_decoder = tf_example_decoder.TfExampleDecoder(
label_map_proto_file=label_map_path)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
.get_shape().as_list()), [None])
with self.test_session() as sess:
sess.run(tf.tables_initializer())
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual([3, 1],
tensor_dict[fields.InputDataFields.groundtruth_classes])
示例14: testDecodeExampleWithLookup
# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import tables_initializer [as 別名]
def testDecodeExampleWithLookup(self):
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/object/class/text':
self._BytesFeature(np.array(['cat', 'dog', 'guinea pig'])),
}))
serialized_example = example.SerializeToString()
# 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2
table = lookup_ops.index_table_from_tensor(
tf.constant(['dog', 'guinea pig', 'cat']))
with self.cached_session() as sess:
sess.run(lookup_ops.tables_initializer())
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image/object/class/text': parsing_ops.VarLenFeature(tf.string),
}
items_to_handlers = {
'labels':
tfexample_decoder.LookupTensor('image/object/class/text', table),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
obtained_class_ids = decoder.decode(serialized_example)[0].eval()
self.assertAllClose([2, 0, 1], obtained_class_ids)