當前位置: 首頁>>代碼示例>>Python>>正文


Python lookup_ops.index_to_string_table_from_file方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.lookup_ops.index_to_string_table_from_file方法的典型用法代碼示例。如果您正苦於以下問題:Python lookup_ops.index_to_string_table_from_file方法的具體用法?Python lookup_ops.index_to_string_table_from_file怎麽用?Python lookup_ops.index_to_string_table_from_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.lookup_ops的用法示例。


在下文中一共展示了lookup_ops.index_to_string_table_from_file方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_infer_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_infer_model(model_creator, hparams, scope=None, single_cell_fn=None):

    """Create inference model."""
    graph = tf.Graph()

    tgt_vocab_file = hparams.tgt_vocab_file

    with graph.as_default():

        tgt_vocab_table = vocab_utils.create_tgt_vocab_table(tgt_vocab_file)
        reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(tgt_vocab_file, default_value=vocab_utils.UNK)

        src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)

        src_dataset = tf.contrib.data.Dataset.from_tensor_slices(src_placeholder)
        iterator = iterator_utils.get_infer_iterator(src_dataset, source_reverse=hparams.source_reverse, src_max_len=hparams.src_max_len_infer)

        model = model_creator(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, single_cell_fn=single_cell_fn)

    return InferModel(graph=graph, model=model, src_placeholder=src_placeholder, iterator=iterator) 
開發者ID:neccam,項目名稱:nslt,代碼行數:22,代碼來源:inference.py

示例2: _convert_ids_to_strings

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def _convert_ids_to_strings(tgt_vocab_file, ids):
  """Convert prediction ids to words."""
  with tf.Session() as sess:
    reverse_target_vocab_table = lookup_ops.index_to_string_table_from_file(
        tgt_vocab_file, default_value=vocab_utils.UNK)
    sess.run(tf.tables_initializer())
    translations = sess.run(
        reverse_target_vocab_table.lookup(
            tf.to_int64(tf.convert_to_tensor(np.asarray(ids)))))
  return translations 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:12,代碼來源:estimator.py

示例3: build_graph_dist_strategy

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def build_graph_dist_strategy(self, features, labels, mode, params):
    """Model function."""
    del labels, params
    misc_utils.print_out("Running dist_strategy mode_fn")

    hparams = self.hparams

    # Create a GNMT model for training.
    # assert (hparams.encoder_type == "gnmt" or
    #        hparams.attention_architecture in ["gnmt", "gnmt_v2"])
    with mixed_precision_scope():
      model = gnmt_model.GNMTModel(hparams, mode=mode, features=features)
      if mode == tf.contrib.learn.ModeKeys.INFER:
        sample_ids = model.sample_id
        reverse_target_vocab_table = lookup_ops.index_to_string_table_from_file(
            hparams.tgt_vocab_file, default_value=vocab_utils.UNK)
        sample_words = reverse_target_vocab_table.lookup(
            tf.to_int64(sample_ids))
        # make sure outputs is of shape [batch_size, time] or [beam_width,
        # batch_size, time] when using beam search.
        if hparams.time_major:
          sample_words = tf.transpose(sample_words)
        elif sample_words.shape.ndims == 3:
          # beam search output in [batch_size, time, beam_width] shape.
          sample_words = tf.transpose(sample_words, [2, 0, 1])
        predictions = {"predictions": sample_words}
        # return loss, vars, grads, predictions, train_op, scaffold
        return None, None, None, predictions, None, None
      elif mode == tf.contrib.learn.ModeKeys.TRAIN:
        loss = model.train_loss
        train_op = model.update
        return loss, model.params, model.grads, None, train_op, None
      else:
        raise ValueError("Unknown mode in model_fn: %s" % mode) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:36,代碼來源:estimator.py

示例4: create_infer_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_infer_model(model_creator, hparams, scope=None, extra_args=None):
  """Create inference model."""
  graph = tf.Graph()
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file

  with graph.as_default(), tf.container(scope or "infer"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
        tgt_vocab_file, default_value=vocab_utils.UNK)

    src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
    batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)

    src_dataset = tf.contrib.data.Dataset.from_tensor_slices(
        src_placeholder)
    iterator = iterator_utils.get_infer_iterator(
        src_dataset,
        src_vocab_table,
        batch_size=batch_size_placeholder,
        eos=hparams.eos,
        source_reverse=hparams.source_reverse,
        src_max_len=hparams.src_max_len_infer)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.INFER,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        reverse_target_vocab_table=reverse_tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return InferModel(
      graph=graph,
      model=model,
      src_placeholder=src_placeholder,
      batch_size_placeholder=batch_size_placeholder,
      iterator=iterator) 
開發者ID:steveash,項目名稱:NETransliteration-COLING2018,代碼行數:41,代碼來源:model_helper.py

示例5: create_infer_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_infer_model(model_creator, hparams, scope=None, extra_args=None):
  """Create inference model."""
  graph = tf.Graph()
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file

  with graph.as_default(), tf.container(scope or "infer"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
        tgt_vocab_file, default_value=vocab_utils.UNK)

    src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
    batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)

    src_dataset = tf.data.Dataset.from_tensor_slices(
        src_placeholder)
    iterator = iterator_utils.get_infer_iterator(
        src_dataset,
        src_vocab_table,
        batch_size=batch_size_placeholder,
        eos=hparams.eos,
        src_max_len=hparams.src_max_len_infer)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.INFER,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        reverse_target_vocab_table=reverse_tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return InferModel(
      graph=graph,
      model=model,
      src_placeholder=src_placeholder,
      batch_size_placeholder=batch_size_placeholder,
      iterator=iterator) 
開發者ID:snuspl,項目名稱:parallax,代碼行數:40,代碼來源:model_helper.py

示例6: __init__

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def __init__(self, corpus_dir, hparams=None, training=True, buffer_size=8192):
        """
        Args:
            corpus_dir: Name of the folder storing corpus files for training.
            hparams: The object containing the loaded hyper parameters. If None, it will be 
                    initialized here.
            training: Whether to use this object for training.
            buffer_size: The buffer size used for mapping process during data processing.
        """
        if hparams is None:
            self.hparams = HParams(corpus_dir).hparams
        else:
            self.hparams = hparams

        self.src_max_len = self.hparams.src_max_len
        self.tgt_max_len = self.hparams.tgt_max_len

        self.training = training
        self.text_set = None
        self.id_set = None

        vocab_file = os.path.join(corpus_dir, VOCAB_FILE)
        self.vocab_size, _ = check_vocab(vocab_file)
        self.vocab_table = lookup_ops.index_table_from_file(vocab_file,
                                                            default_value=self.hparams.unk_id)
        # print("vocab_size = {}".format(self.vocab_size))

        if training:
            self.case_table = prepare_case_table()
            self.reverse_vocab_table = None
            self._load_corpus(corpus_dir)
            self._convert_to_tokens(buffer_size)
        else:
            self.case_table = None
            self.reverse_vocab_table = \
                lookup_ops.index_to_string_table_from_file(vocab_file,
                                                           default_value=self.hparams.unk_token) 
開發者ID:bshao001,項目名稱:ChatLearner,代碼行數:39,代碼來源:tokenizeddata.py

示例7: create_infer_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_infer_model(model_creator, hparams, scope=None, extra_args=None):
  """Create inference model."""
  graph = tf.Graph()
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file

  with graph.as_default(), tf.container(scope or "infer"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
        tgt_vocab_file, default_value=vocab_utils.UNK)

    src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
    batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)

    src_dataset = tf.data.Dataset.from_tensor_slices(
        src_placeholder)
    iterator = iterator_utils.get_infer_iterator(
        src_dataset,
        src_vocab_table,
        batch_size=batch_size_placeholder,
        eos=hparams.eos,
        src_max_len=hparams.src_max_len_infer,
        use_char_encode=hparams.use_char_encode)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.INFER,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        reverse_target_vocab_table=reverse_tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return InferModel(
      graph=graph,
      model=model,
      src_placeholder=src_placeholder,
      batch_size_placeholder=batch_size_placeholder,
      iterator=iterator) 
開發者ID:mlperf,項目名稱:inference,代碼行數:41,代碼來源:model_helper.py

示例8: create_rev_vocab_table

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_rev_vocab_table(vocab_file):
    return lookup_ops.index_to_string_table_from_file(vocab_file, default_value=UNK) 
開發者ID:nouhadziri,項目名稱:THRED,代碼行數:4,代碼來源:vocab.py

示例9: test_module_export_vocab_on_custom_fs

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def test_module_export_vocab_on_custom_fs(self):
    root_dir = "file://%s" % self.get_temp_dir()
    export_dir = "%s_%s" % (root_dir, "export")
    tf_v1.gfile.MakeDirs(export_dir)
    # Create a module with a vocab file located on a custom filesystem.
    vocab_dir = os.path.join(root_dir, "vocab_location")
    tf_v1.gfile.MakeDirs(vocab_dir)
    vocab_filename = os.path.join(vocab_dir, "tokens.txt")
    tf_utils.atomic_write_string_to_file(vocab_filename, "one", False)

    def create_assets_module_fn():

      def assets_module_fn():
        indices = tf_v1.placeholder(dtype=tf.int64, name="indices")
        table = index_to_string_table_from_file(
            vocabulary_file=vocab_filename, default_value="UNKNOWN")
        outputs = table.lookup(indices)
        hub.add_signature(inputs=indices, outputs=outputs)

      return assets_module_fn

    with tf.Graph().as_default():
      assets_module_fn = create_assets_module_fn()
      spec = hub.create_module_spec(assets_module_fn)
      embedding_module = hub.Module(spec)
      with tf_v1.Session() as sess:
        sess.run(tf_v1.tables_initializer())
        embedding_module.export(export_dir, sess)

    module_files = tf_v1.gfile.ListDirectory(export_dir)
    self.assertListEqual(
        ["assets", "saved_model.pb", "tfhub_module.pb", "variables"],
        sorted(module_files))
    module_files = tf_v1.gfile.ListDirectory(os.path.join(export_dir, "assets"))
    self.assertListEqual(["tokens.txt"], module_files) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:37,代碼來源:e2e_test.py

示例10: do_table_lookup

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def do_table_lookup(indices, vocabulary_file):
  table = index_to_string_table_from_file(
      vocabulary_file=vocabulary_file,
      default_value="UNKNOWN")
  return table.lookup(indices) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:7,代碼來源:native_module_test.py

示例11: create_eval_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_eval_model(model_creator, hparams, scope=None, extra_args=None):
  """Create train graph, model, src/tgt file holders, and iterator."""
  src_vocab_file = hparams.src_vocab_file
  tgt_vocab_file = hparams.tgt_vocab_file
  graph = tf.Graph()

  with graph.as_default(), tf.container(scope or "eval"):
    src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
        src_vocab_file, tgt_vocab_file, hparams.share_vocab)
    reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
        tgt_vocab_file, default_value=vocab_utils.UNK)

    src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
    tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
    src_dataset = tf.data.TextLineDataset(src_file_placeholder)
    tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder)
    iterator = iterator_utils.get_iterator(
        src_dataset,
        tgt_dataset,
        src_vocab_table,
        tgt_vocab_table,
        hparams.batch_size,
        sos=hparams.sos,
        eos=hparams.eos,
        random_seed=hparams.random_seed,
        num_buckets=hparams.num_buckets,
        src_max_len=hparams.src_max_len_infer,
        tgt_max_len=hparams.tgt_max_len_infer,
        use_char_encode=hparams.use_char_encode)
    model = model_creator(
        hparams,
        iterator=iterator,
        mode=tf.contrib.learn.ModeKeys.EVAL,
        source_vocab_table=src_vocab_table,
        target_vocab_table=tgt_vocab_table,
        reverse_target_vocab_table=reverse_tgt_vocab_table,
        scope=scope,
        extra_args=extra_args)
  return EvalModel(
      graph=graph,
      model=model,
      src_file_placeholder=src_file_placeholder,
      tgt_file_placeholder=tgt_file_placeholder,
      iterator=iterator) 
開發者ID:mlperf,項目名稱:inference,代碼行數:46,代碼來源:model_helper.py

示例12: create_infer_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_infer_model(model_creator, hparams, scope=None):
    graph = tf.Graph()
    src_vocab_file = hparams.src_vocab_file
    tgt_vocab_file = hparams.tgt_vocab_file

    with graph.as_default(), tf.container(scope or "infer"):
        src_vocab_table, tgt_vocab_table = create_vocab_tables(
            src_vocab_file, tgt_vocab_file, hparams.share_vocab, hparams.max_vocab_size)
        reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(tgt_vocab_file, default_value=UNK)

        src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
        tgt_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
        batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)

        src_dataset = tf.data.Dataset.from_tensor_slices(src_placeholder)
        tgt_dataset = tf.data.Dataset.from_tensor_slices(tgt_placeholder)

        iterator = get_infer_iterator_exp(
            src_dataset,
            tgt_dataset,
            src_vocab_table,
            tgt_vocab_table,
            hparams.infer_batch_size,
            sos=hparams.sos,
            eos=hparams.eos,
            src_max_len=hparams.src_max_len_infer,
            tgt_max_len=hparams.tgt_max_len_infer)

        model = model_creator(
            hparams,
            iterator=iterator,
            mode=tf.contrib.learn.ModeKeys.INFER,
            reverse_target_vocab_table=reverse_tgt_vocab_table,
            scope=scope)

        return InferModel(
            graph=graph,
            model=model,
            src_placeholder=src_placeholder,
            tgt_placeholder=tgt_placeholder,
            batch_size_placeholder=batch_size_placeholder,
            iterator=iterator) 
開發者ID:lovecambi,項目名稱:qebrain,代碼行數:44,代碼來源:expert_model.py

示例13: create_eval_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_eval_model(model_creator, hparams, scope=None, extra_args=None):
    """Create train graph, model, src/tgt file holders, and iterator."""
    src_vocab_file = hparams.src_vocab_file
    tgt_vocab_file = hparams.tgt_vocab_file
    graph = tf.Graph()

    with graph.as_default(), tf.container(scope or "eval"):
        src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
            src_vocab_file, tgt_vocab_file, hparams.share_vocab
        )
        reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
            tgt_vocab_file, default_value=vocab_utils.UNK
        )

        src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
        tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
        src_dataset = tf.data.TextLineDataset(src_file_placeholder)
        tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder)
        iterator = iterator_utils.get_iterator(
            src_dataset,
            tgt_dataset,
            src_vocab_table,
            tgt_vocab_table,
            hparams.batch_size,
            sos=hparams.sos,
            eos=hparams.eos,
            random_seed=hparams.random_seed,
            num_buckets=hparams.num_buckets,
            src_max_len=hparams.src_max_len_infer,
            tgt_max_len=hparams.tgt_max_len_infer,
            use_char_encode=hparams.use_char_encode,
        )
        model = model_creator(
            hparams,
            iterator=iterator,
            mode=tf.contrib.learn.ModeKeys.EVAL,
            source_vocab_table=src_vocab_table,
            target_vocab_table=tgt_vocab_table,
            reverse_target_vocab_table=reverse_tgt_vocab_table,
            scope=scope,
            extra_args=extra_args,
        )
    return EvalModel(
        graph=graph,
        model=model,
        src_file_placeholder=src_file_placeholder,
        tgt_file_placeholder=tgt_file_placeholder,
        iterator=iterator,
    ) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:51,代碼來源:model_helper.py

示例14: create_infer_model

# 需要導入模塊: from tensorflow.python.ops import lookup_ops [as 別名]
# 或者: from tensorflow.python.ops.lookup_ops import index_to_string_table_from_file [as 別名]
def create_infer_model(model_creator, hparams, scope=None, extra_args=None):
    """Create inference model."""
    graph = tf.Graph()
    src_vocab_file = hparams.src_vocab_file
    tgt_vocab_file = hparams.tgt_vocab_file

    with graph.as_default(), tf.container(scope or "infer"):
        src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
            src_vocab_file, tgt_vocab_file, hparams.share_vocab
        )
        reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(
            tgt_vocab_file, default_value=vocab_utils.UNK
        )

        src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
        batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)

        src_dataset = tf.data.Dataset.from_tensor_slices(src_placeholder)
        iterator = iterator_utils.get_infer_iterator(
            src_dataset,
            src_vocab_table,
            batch_size=batch_size_placeholder,
            eos=hparams.eos,
            src_max_len=hparams.src_max_len_infer,
            use_char_encode=hparams.use_char_encode,
        )
        model = model_creator(
            hparams,
            iterator=iterator,
            mode=tf.contrib.learn.ModeKeys.INFER,
            source_vocab_table=src_vocab_table,
            target_vocab_table=tgt_vocab_table,
            reverse_target_vocab_table=reverse_tgt_vocab_table,
            scope=scope,
            extra_args=extra_args,
        )
    return InferModel(
        graph=graph,
        model=model,
        src_placeholder=src_placeholder,
        batch_size_placeholder=batch_size_placeholder,
        iterator=iterator,
    ) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:45,代碼來源:model_helper.py


注:本文中的tensorflow.python.ops.lookup_ops.index_to_string_table_from_file方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。