當前位置: 首頁>>代碼示例>>Python>>正文


Python logging_ops.scalar_summary方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.logging_ops.scalar_summary方法的典型用法代碼示例。如果您正苦於以下問題:Python logging_ops.scalar_summary方法的具體用法?Python logging_ops.scalar_summary怎麽用?Python logging_ops.scalar_summary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.logging_ops的用法示例。


在下文中一共展示了logging_ops.scalar_summary方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_queue

# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import scalar_summary [as 別名]
def create_queue(self, shared_name=None, name=None):
        from tensorflow.python.ops import data_flow_ops, logging_ops, math_ops
        from tensorflow.python.framework import dtypes
        assert self.dtypes is not None and self.shapes is not None
        assert len(self.dtypes) == len(self.shapes)
        capacity = self.queue_size
        self._queue = data_flow_ops.FIFOQueue(
            capacity=capacity,
            dtypes=self.dtypes,
            shapes=self.shapes,
            shared_name=shared_name,
            name=name)

        enq = self._queue.enqueue_many(self.batch_phs)
        # create a queue runner
        queue_runner.add_queue_runner(queue_runner.QueueRunner(
            self._queue, [enq]*self.nthreads,
            feed_dict_op=[lambda: self.next_batch()],
            feed_dict_key=self.batch_phs))
        # summary_name = 'fraction_of_%d_full' % capacity
        # logging_ops.scalar_summary("queue/%s/%s" % (
            # self._queue.name, summary_name), math_ops.cast(
                # self._queue.size(), dtypes.float32) * (1. / capacity)) 
開發者ID:JiahuiYu,項目名稱:neuralgym,代碼行數:25,代碼來源:data_from_fnames.py

示例2: _add_hidden_layer_summary

# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import scalar_summary [as 別名]
def _add_hidden_layer_summary(value, tag):
  logging_ops.scalar_summary("%s/fraction_of_zero_values" % tag,
                             nn.zero_fraction(value))
  logging_ops.histogram_summary("%s/activation" % tag, value) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:6,代碼來源:dnn_linear_combined.py

示例3: _training_loss

# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import scalar_summary [as 別名]
def _training_loss(features,
                   labels,
                   logits,
                   loss_fn,
                   weight_column_name=None,
                   head_name=None):
  """Returns training loss tensor.

  Training loss is different from the loss reported on the tensorboard as we
  should respect the example weights when computing the gradient.

    L = sum_{i} w_{i} * l_{i} / B

  where B is the number of examples in the batch, l_{i}, w_{i} are individual
  losses, and example weight.

  Args:
    features: Features `dict`.
    labels: Either a `Tensor` for labels or in multihead case, a `dict` of
      string to `Tensor`.
    logits: logits, a float `Tensor`. Shape is `(batch_size, logits_dimension)`.
    loss_fn: Function taking `logits` and `labels`, and returning the raw
      unweighted loss.
    weight_column_name: Key for weights `Tensor` in `features`, if applicable.
    head_name: Head name, used for summary.

  Returns:
    A loss `Output`.
  """
  with ops.name_scope(None, "training_loss",
                      tuple(six.itervalues(features)) +
                      (labels, logits)) as name:
    loss, weighted_average_loss = _loss(
        loss_fn(logits, labels),
        _weight_tensor(features, weight_column_name),
        name=name)
    # The tag must be same as the tag for eval loss, so the losses will show up
    # in the same graph in tensorboard.
    logging_ops.scalar_summary(
        _summary_key(head_name, "loss"), weighted_average_loss)
    return loss 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:43,代碼來源:head.py

示例4: _get_model_function

# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import scalar_summary [as 別名]
def _get_model_function(self):
    """Creates a model function."""

    def _model_fn(features, labels, mode):
      """Model function."""
      assert labels is None, labels
      (all_scores, model_predictions, losses,
       training_op) = clustering_ops.KMeans(
           self._parse_tensor_or_dict(features),
           self._num_clusters,
           self._training_initial_clusters,
           self._distance_metric,
           self._use_mini_batch,
           random_seed=self._random_seed,
           kmeans_plus_plus_num_retries=self.
           _kmeans_plus_plus_num_retries).training_graph()
      incr_step = state_ops.assign_add(variables.get_global_step(), 1)
      loss = math_ops.reduce_sum(losses, name=KMeansClustering.LOSS_OP_NAME)
      logging_ops.scalar_summary('loss/raw', loss)
      training_op = with_dependencies([training_op, incr_step], loss)
      predictions = {
          KMeansClustering.ALL_SCORES: all_scores[0],
          KMeansClustering.CLUSTER_IDX: model_predictions[0],
      }
      eval_metric_ops = {KMeansClustering.SCORES: loss,}
      if self._relative_tolerance is not None:
        training_hooks = [self.LossRelativeChangeHook(self._relative_tolerance)]
      else:
        training_hooks = None
      return ModelFnOps(
          mode=mode,
          predictions=predictions,
          eval_metric_ops=eval_metric_ops,
          loss=loss,
          train_op=training_op,
          training_hooks=training_hooks)

    return _model_fn 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:40,代碼來源:kmeans.py

示例5: _add_hidden_layer_summary

# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import scalar_summary [as 別名]
def _add_hidden_layer_summary(value, tag):
  logging_ops.scalar_summary("%s:fraction_of_zero_values" % tag,
                             nn.zero_fraction(value))
  logging_ops.histogram_summary("%s:activation" % tag, value) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:6,代碼來源:dnn_linear_combined.py

示例6: _create_model_fn_ops

# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import scalar_summary [as 別名]
def _create_model_fn_ops(features,
                         mode,
                         loss_fn,
                         logits_to_predictions_fn,
                         metrics_fn,
                         create_output_alternatives_fn,
                         labels=None,
                         train_op_fn=None,
                         logits=None,
                         logits_dimension=None,
                         head_name=None,
                         weight_column_name=None,
                         enable_centered_bias=False):
  """Returns a `ModelFnOps` object."""
  _check_mode_valid(mode)

  centered_bias = None
  if enable_centered_bias:
    centered_bias = _centered_bias(logits_dimension, head_name)
    logits = nn.bias_add(logits, centered_bias)

  predictions = logits_to_predictions_fn(logits)
  loss = None
  train_op = None
  eval_metric_ops = None
  if (mode != model_fn.ModeKeys.INFER) and (labels is not None):
    weight_tensor = _weight_tensor(features, weight_column_name)
    loss, weighted_average_loss = loss_fn(labels, logits, weight_tensor)
    # Uses the deprecated API to set the tag explicitly.
    # Without it, trianing and eval losses will show up in different graphs.
    logging_ops.scalar_summary(
        _summary_key(head_name, mkey.LOSS), weighted_average_loss)

    if mode == model_fn.ModeKeys.TRAIN:
      if train_op_fn is None:
        raise ValueError("train_op_fn can not be None in TRAIN mode")
      batch_size = array_ops.shape(logits)[0]
      train_op = _train_op(loss, labels, train_op_fn, centered_bias,
                           batch_size, loss_fn, weight_tensor)
    eval_metric_ops = metrics_fn(
        weighted_average_loss, predictions, labels, weight_tensor)
  return model_fn.ModelFnOps(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=eval_metric_ops,
      output_alternatives=create_output_alternatives_fn(predictions)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:50,代碼來源:head.py


注:本文中的tensorflow.python.ops.logging_ops.scalar_summary方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。