本文整理匯總了Python中tensorflow.python.ops.logging_ops.Print方法的典型用法代碼示例。如果您正苦於以下問題:Python logging_ops.Print方法的具體用法?Python logging_ops.Print怎麽用?Python logging_ops.Print使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.logging_ops
的用法示例。
在下文中一共展示了logging_ops.Print方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_image_summary
# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import Print [as 別名]
def add_image_summary(tensor, name=None, prefix=None, print_summary=False):
"""Adds an image summary for the given tensor.
Args:
tensor: a variable or op tensor with shape [batch,height,width,channels]
name: the optional name for the summary.
prefix: An optional prefix for the summary names.
print_summary: If `True`, the summary is printed to stdout when the summary
is computed.
Returns:
An image `Tensor` of type `string` whose contents are the serialized
`Summary` protocol buffer.
"""
summary_name = _get_summary_name(tensor, name, prefix)
# If print_summary, then we need to make sure that this call doesn't add the
# non-printing op to the collection. We'll add it to the collection later.
collections = [] if print_summary else None
op = summary.image(
name=summary_name, tensor=tensor, collections=collections)
if print_summary:
op = logging_ops.Print(op, [tensor], summary_name)
ops.add_to_collection(ops.GraphKeys.SUMMARIES, op)
return op
示例2: add_scalar_summary
# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import Print [as 別名]
def add_scalar_summary(tensor, name=None, prefix=None, print_summary=False):
"""Adds a scalar summary for the given tensor.
Args:
tensor: a variable or op tensor.
name: the optional name for the summary.
prefix: An optional prefix for the summary names.
print_summary: If `True`, the summary is printed to stdout when the summary
is computed.
Returns:
A scalar `Tensor` of type `string` whose contents are the serialized
`Summary` protocol buffer.
"""
collections = [] if print_summary else None
summary_name = _get_summary_name(tensor, name, prefix)
# If print_summary, then we need to make sure that this call doesn't add the
# non-printing op to the collection. We'll add it to the collection later.
op = summary.scalar(
name=summary_name, tensor=tensor, collections=collections)
if print_summary:
op = logging_ops.Print(op, [tensor], summary_name)
ops.add_to_collection(ops.GraphKeys.SUMMARIES, op)
return op
示例3: print_tensor
# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import Print [as 別名]
def print_tensor(x, message=''):
"""Prints `message` and the tensor value when evaluated.
Arguments:
x: Tensor to print.
message: Message to print jointly with the tensor.
Returns:
The same tensor `x`, unchanged.
"""
return logging_ops.Print(x, [x], message)
# GRAPH MANIPULATION
示例4: npairs_loss
# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import Print [as 別名]
def npairs_loss(labels, embeddings_anchor, embeddings_positive,
reg_lambda=0.002, print_losses=False):
"""Computes the npairs loss.
Npairs loss expects paired data where a pair is composed of samples from the
same labels and each pairs in the minibatch have different labels. The loss
has two components. The first component is the L2 regularizer on the
embedding vectors. The second component is the sum of cross entropy loss
which takes each row of the pair-wise similarity matrix as logits and
the remapped one-hot labels as labels.
See: http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf
Args:
labels: 1-D tf.int32 `Tensor` of shape [batch_size/2].
embeddings_anchor: 2-D Tensor of shape [batch_size/2, embedding_dim] for the
embedding vectors for the anchor images. Embeddings should not be
l2 normalized.
embeddings_positive: 2-D Tensor of shape [batch_size/2, embedding_dim] for the
embedding vectors for the positive images. Embeddings should not be
l2 normalized.
reg_lambda: Float. L2 regularization term on the embedding vectors.
print_losses: Boolean. Option to print the xent and l2loss.
Returns:
npairs_loss: tf.float32 scalar.
"""
# pylint: enable=line-too-long
# Add the regularizer on the embedding.
reg_anchor = math_ops.reduce_mean(
math_ops.reduce_sum(math_ops.square(embeddings_anchor), 1))
reg_positive = math_ops.reduce_mean(
math_ops.reduce_sum(math_ops.square(embeddings_positive), 1))
l2loss = math_ops.multiply(
0.25 * reg_lambda, reg_anchor + reg_positive, name='l2loss')
# Get per pair similarities.
similarity_matrix = math_ops.matmul(
embeddings_anchor, embeddings_positive, transpose_a=False,
transpose_b=True)
# Reshape [batch_size] label tensor to a [batch_size, 1] label tensor.
lshape = array_ops.shape(labels)
assert lshape.shape == 1
labels = array_ops.reshape(labels, [lshape[0], 1])
labels_remapped = math_ops.cast(
math_ops.equal(labels, array_ops.transpose(labels)), dtypes.float32)
labels_remapped /= math_ops.reduce_sum(labels_remapped, 1, keepdims=True)
# Add the softmax loss.
xent_loss = nn.softmax_cross_entropy_with_logits(
logits=similarity_matrix, labels=labels_remapped)
xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy')
if print_losses:
xent_loss = logging_ops.Print(
xent_loss, ['cross entropy:', xent_loss, 'l2loss:', l2loss])
return l2loss + xent_loss
示例5: npairs_loss
# 需要導入模塊: from tensorflow.python.ops import logging_ops [as 別名]
# 或者: from tensorflow.python.ops.logging_ops import Print [as 別名]
def npairs_loss(labels, embeddings_anchor, embeddings_positive,
reg_lambda=0.002, print_losses=False):
"""Computes the npairs loss.
Npairs loss expects paired data where a pair is composed of samples from the
same labels and each pairs in the minibatch have different labels. The loss
has two components. The first component is the L2 regularizer on the
embedding vectors. The second component is the sum of cross entropy loss
which takes each row of the pair-wise similarity matrix as logits and
the remapped one-hot labels as labels.
See: http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf
Args:
labels: 1-D tf.int32 `Tensor` of shape [batch_size/2].
embeddings_anchor: 2-D Tensor of shape [batch_size/2, embedding_dim] for the
embedding vectors for the anchor images. Embeddings should not be
l2 normalized.
embeddings_positive: 2-D Tensor of shape [batch_size/2, embedding_dim] for the
embedding vectors for the positive images. Embeddings should not be
l2 normalized.
reg_lambda: Float. L2 regularization term on the embedding vectors.
print_losses: Boolean. Option to print the xent and l2loss.
Returns:
npairs_loss: tf.float32 scalar.
"""
# pylint: enable=line-too-long
# Add the regularizer on the embedding.
reg_anchor = math_ops.reduce_mean(
math_ops.reduce_sum(math_ops.square(embeddings_anchor), 1))
reg_positive = math_ops.reduce_mean(
math_ops.reduce_sum(math_ops.square(embeddings_positive), 1))
l2loss = math_ops.multiply(
0.25 * reg_lambda, reg_anchor + reg_positive, name='l2loss')
# Get per pair similarities.
similarity_matrix = math_ops.matmul(
embeddings_anchor, embeddings_positive, transpose_a=False,
transpose_b=True)
# Reshape [batch_size] label tensor to a [batch_size, 1] label tensor.
lshape = array_ops.shape(labels)
assert lshape.shape == 1
labels = array_ops.reshape(labels, [lshape[0], 1])
labels_remapped = math_ops.to_float(
math_ops.equal(labels, array_ops.transpose(labels)))
labels_remapped /= math_ops.reduce_sum(labels_remapped, 1, keep_dims=True)
# Add the softmax loss.
xent_loss = nn.softmax_cross_entropy_with_logits(
logits=similarity_matrix, labels=labels_remapped)
xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy')
if print_losses:
xent_loss = logging_ops.Print(
xent_loss, ['cross entropy:', xent_loss, 'l2loss:', l2loss])
return l2loss + xent_loss