當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg_ops.matrix_triangular_solve方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.linalg_ops.matrix_triangular_solve方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg_ops.matrix_triangular_solve方法的具體用法?Python linalg_ops.matrix_triangular_solve怎麽用?Python linalg_ops.matrix_triangular_solve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.linalg_ops的用法示例。


在下文中一共展示了linalg_ops.matrix_triangular_solve方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _MatrixTriangularSolveGrad

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _MatrixTriangularSolveGrad(op, grad):
  """Gradient for MatrixTriangularSolve."""
  a = op.inputs[0]
  adjoint_a = op.get_attr("adjoint")
  lower_a = op.get_attr("lower")
  c = op.outputs[0]
  grad_b = linalg_ops.matrix_triangular_solve(
      a, grad, lower=lower_a, adjoint=not adjoint_a)
  if adjoint_a:
    grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True)
  else:
    grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True)
  if lower_a:
    grad_a = array_ops.matrix_band_part(grad_a, -1, 0)
  else:
    grad_a = array_ops.matrix_band_part(grad_a, 0, -1)
  return (grad_a, grad_b) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:linalg_grad.py

示例2: _define_full_covariance_probs

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _define_full_covariance_probs(self, shard_id, shard):
    """Defines the full covariance probabilties per example in a class.

    Updates a matrix with dimension num_examples X num_classes.

    Args:
      shard_id: id of the current shard.
      shard: current data shard, 1 X num_examples X dimensions.
    """
    diff = shard - self._means
    cholesky = linalg_ops.cholesky(self._covs + self._min_var)
    log_det_covs = 2.0 * math_ops.reduce_sum(
        math_ops.log(array_ops.matrix_diag_part(cholesky)), 1)
    x_mu_cov = math_ops.square(
        linalg_ops.matrix_triangular_solve(
            cholesky, array_ops.transpose(
                diff, perm=[0, 2, 1]), lower=True))
    diag_m = array_ops.transpose(math_ops.reduce_sum(x_mu_cov, 1))
    self._probs[shard_id] = -0.5 * (diag_m + math_ops.to_float(self._dimensions)
                                    * math_ops.log(2 * np.pi) + log_det_covs) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:gmm_ops.py

示例3: sqrt_solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def sqrt_solve(self, x):
    """Computes `solve(self, x)`.

    Doesn't actually do the sqrt! Named as such to agree with API.

    To compute (M + V D V.T), we use the the Woodbury matrix identity:
      inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
    where,
      C = inv(D) + V.T inv(M) V.
    See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity

    Args:
      x: `Tensor`

    Returns:
      inv_of_self_times_x: `Tensor`
    """
    minv_x = linalg_ops.matrix_triangular_solve(self._m, x)
    vt_minv_x = math_ops.matmul(self._v, minv_x, transpose_a=True)
    cinv_vt_minv_x = linalg_ops.matrix_solve(
        self._woodbury_sandwiched_term(), vt_minv_x)
    v_cinv_vt_minv_x = math_ops.matmul(self._v, cinv_vt_minv_x)
    minv_v_cinv_vt_minv_x = linalg_ops.matrix_triangular_solve(
        self._m, v_cinv_vt_minv_x)
    return minv_x - minv_v_cinv_vt_minv_x 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:affine_impl.py

示例4: _woodbury_sandwiched_term

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _woodbury_sandwiched_term(self):
    """Computes the sandwiched term in the Woodbury identity.

    Computes the "`C`" in the the identity:
       inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
    where,
       C = inv(D) + V.T inv(M) V.

    See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity

    Returns:
      woodbury_sandwich_term: A `Tensor` to be used like `C`, above.
    """
    minv_v = linalg_ops.matrix_triangular_solve(self._m, self._v)
    vt_minv_v = math_ops.matmul(self._v, minv_v, adjoint_a=True)
    return self._d_inv.add_to_tensor(vt_minv_v) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:affine_impl.py

示例5: _MatrixTriangularSolveGrad

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _MatrixTriangularSolveGrad(op, grad):
  """Gradient for MatrixTriangularSolve."""
  a = op.inputs[0]
  adjoint_a = op.get_attr("adjoint")
  lower_a = op.get_attr("lower")
  c = op.outputs[0]
  grad_b = linalg_ops.matrix_triangular_solve(
      a, grad, lower=lower_a, adjoint=not adjoint_a)
  if adjoint_a:
    grad_a = -math_ops.batch_matmul(c, grad_b, adj_y=True)
  else:
    grad_a = -math_ops.batch_matmul(grad_b, c, adj_y=True)
  if lower_a:
    grad_a = array_ops.matrix_band_part(grad_a, -1, 0)
  else:
    grad_a = array_ops.matrix_band_part(grad_a, 0, -1)
  return (grad_a, grad_b) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:linalg_grad.py

示例6: _CholeskyGrad

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _CholeskyGrad(op, grad):
  """Gradient for Cholesky."""

  # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1}
  l = op.outputs[0]
  num_rows = array_ops.shape(l)[-1]
  batch_shape = array_ops.shape(l)[:-2]
  l_inverse = linalg_ops.matrix_triangular_solve(l,
                                                 linalg_ops.eye(
                                                     num_rows,
                                                     batch_shape=batch_shape,
                                                     dtype=l.dtype))

  middle = math_ops.matmul(l, grad, adjoint_a=True)
  middle = array_ops.matrix_set_diag(middle,
                                     0.5 * array_ops.matrix_diag_part(middle))
  middle = array_ops.matrix_band_part(middle, -1, 0)

  grad_a = math_ops.matmul(
      math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse)

  grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a))
  return grad_a * 0.5 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:25,代碼來源:linalg_grad.py

示例7: _batch_sqrt_solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _batch_sqrt_solve(self, rhs):
    return linalg_ops.matrix_triangular_solve(self._chol, rhs, lower=True) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:operator_pd_cholesky.py

示例8: _solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
    rhs = linear_operator_util.matrix_adjoint(rhs) if adjoint_arg else rhs
    return linalg_ops.matrix_triangular_solve(
        self._tril, rhs, lower=True, adjoint=adjoint) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:linear_operator_tril.py

示例9: _solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _solve(self, rhs, adjoint=False):
    return linalg_ops.matrix_triangular_solve(
        self._tril, rhs, lower=True, adjoint=adjoint) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:5,代碼來源:linear_operator_tril.py

示例10: _inverse

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_triangular_solve [as 別名]
def _inverse(self, y):
    x = y - self.shift
    x, sample_shape = self.shaper.make_batch_of_event_sample_matrices(x)
    x = linalg_ops.matrix_triangular_solve(self.scale, x)
    x = self.shaper.undo_make_batch_of_event_sample_matrices(x, sample_shape)
    return x 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:bijector.py


注:本文中的tensorflow.python.ops.linalg_ops.matrix_triangular_solve方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。