本文整理匯總了Python中tensorflow.python.ops.linalg_ops.matrix_solve方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg_ops.matrix_solve方法的具體用法?Python linalg_ops.matrix_solve怎麽用?Python linalg_ops.matrix_solve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.linalg_ops
的用法示例。
在下文中一共展示了linalg_ops.matrix_solve方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testSqrtSolve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def testSqrtSolve(self):
# Square roots are not unique, but we should still have
# S^{-T} S^{-1} x = A^{-1} x.
# In our case, we should have S = S^T, so then S^{-1} S^{-1} x = A^{-1} x.
with self.test_session():
for batch_shape in [(), (
2,
3,)]:
for k in [1, 4]:
operator, mat = self._build_operator_and_mat(batch_shape, k)
# Work with 5 simultaneous systems. 5 is arbitrary.
x = self._rng.randn(*(batch_shape + (k, 5)))
self._compare_results(
expected=linalg_ops.matrix_solve(mat, x).eval(),
actual=operator.sqrt_solve(operator.sqrt_solve(x)))
示例2: sqrt_solve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def sqrt_solve(self, x):
"""Computes `solve(self, x)`.
Doesn't actually do the sqrt! Named as such to agree with API.
To compute (M + V D V.T), we use the the Woodbury matrix identity:
inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
where,
C = inv(D) + V.T inv(M) V.
See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity
Args:
x: `Tensor`
Returns:
inv_of_self_times_x: `Tensor`
"""
minv_x = linalg_ops.matrix_triangular_solve(self._m, x)
vt_minv_x = math_ops.matmul(self._v, minv_x, transpose_a=True)
cinv_vt_minv_x = linalg_ops.matrix_solve(
self._woodbury_sandwiched_term(), vt_minv_x)
v_cinv_vt_minv_x = math_ops.matmul(self._v, cinv_vt_minv_x)
minv_v_cinv_vt_minv_x = linalg_ops.matrix_triangular_solve(
self._m, v_cinv_vt_minv_x)
return minv_x - minv_v_cinv_vt_minv_x
示例3: test_solve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def test_solve(self):
self._maybe_skip("solve")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
for adjoint in False, True:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
rhs = self._make_rhs(operator, adjoint=adjoint)
op_solve = operator.solve(rhs, adjoint=adjoint)
mat_solve = linalg_ops.matrix_solve(mat, rhs, adjoint=adjoint)
if not use_placeholder:
self.assertAllEqual(op_solve.get_shape(), mat_solve.get_shape())
op_solve_v, mat_solve_v = sess.run([op_solve, mat_solve],
feed_dict=feed_dict)
self.assertAC(op_solve_v, mat_solve_v)
示例4: _MatrixSolveGrad
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def _MatrixSolveGrad(op, grad):
"""Gradient for MatrixSolve."""
a = op.inputs[0]
adjoint_a = op.get_attr("adjoint")
c = op.outputs[0]
grad_b = linalg_ops.matrix_solve(a, grad, adjoint=not adjoint_a)
if adjoint_a:
grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True)
else:
grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True)
return (grad_a, grad_b)
示例5: testSolve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def testSolve(self):
with self.test_session():
for batch_shape in [(), (
2,
3,)]:
for k in [1, 4]:
operator, mat = self._build_operator_and_mat(batch_shape, k)
# Work with 5 simultaneous systems. 5 is arbitrary.
x = self._rng.randn(*(batch_shape + (k, 5)))
self._compare_results(
expected=linalg_ops.matrix_solve(mat, x).eval(),
actual=operator.solve(x))
示例6: _solve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
"""Default implementation of _solve."""
if self.is_square is False:
raise NotImplementedError(
"Solve is not yet implemented for non-square operators.")
logging.warn(
"Using (possibly slow) default implementation of solve."
" Requires conversion to a dense matrix and O(N^3) operations.")
rhs = linear_operator_util.matrix_adjoint(rhs) if adjoint_arg else rhs
if self._can_use_cholesky():
return linalg_ops.cholesky_solve(self._get_cached_chol(), rhs)
return linalg_ops.matrix_solve(
self._get_cached_dense_matrix(), rhs, adjoint=adjoint)
示例7: test_solve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def test_solve(self):
self._skip_if_tests_to_skip_contains("solve")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
for adjoint in False, True:
for adjoint_arg in False, True:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
rhs = self._make_rhs(operator, adjoint=adjoint)
# If adjoint_arg, solve A X = (rhs^H)^H = rhs.
if adjoint_arg:
op_solve = operator.solve(
linear_operator_util.matrix_adjoint(rhs),
adjoint=adjoint, adjoint_arg=adjoint_arg)
else:
op_solve = operator.solve(
rhs, adjoint=adjoint, adjoint_arg=adjoint_arg)
mat_solve = linalg_ops.matrix_solve(mat, rhs, adjoint=adjoint)
if not use_placeholder:
self.assertAllEqual(
op_solve.get_shape(), mat_solve.get_shape())
op_solve_v, mat_solve_v = sess.run([op_solve, mat_solve],
feed_dict=feed_dict)
self.assertAC(op_solve_v, mat_solve_v)
示例8: _solve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
if self.base_operator.is_non_singular is False:
raise ValueError(
"Solve not implemented unless this is a perturbation of a "
"non-singular LinearOperator.")
# The Woodbury formula gives:
# https://en.wikipedia.org/wiki/Woodbury_matrix_identity
# (L + UDV^H)^{-1}
# = L^{-1} - L^{-1} U (D^{-1} + V^H L^{-1} U)^{-1} V^H L^{-1}
# = L^{-1} - L^{-1} U C^{-1} V^H L^{-1}
# where C is the capacitance matrix, C := D^{-1} + V^H L^{-1} U
# Note also that, with ^{-H} being the inverse of the adjoint,
# (L + UDV^H)^{-H}
# = L^{-H} - L^{-H} V C^{-H} U^H L^{-H}
l = self.base_operator
if adjoint:
v = self.u
u = self.v
else:
v = self.v
u = self.u
# L^{-1} rhs
linv_rhs = l.solve(rhs, adjoint=adjoint, adjoint_arg=adjoint_arg)
# V^H L^{-1} rhs
vh_linv_rhs = math_ops.matmul(v, linv_rhs, adjoint_a=True)
# C^{-1} V^H L^{-1} rhs
if self._use_cholesky:
capinv_vh_linv_rhs = linalg_ops.cholesky_solve(
self._chol_capacitance, vh_linv_rhs)
else:
capinv_vh_linv_rhs = linalg_ops.matrix_solve(
self._capacitance, vh_linv_rhs, adjoint=adjoint)
# U C^{-1} V^H M^{-1} rhs
u_capinv_vh_linv_rhs = math_ops.matmul(u, capinv_vh_linv_rhs)
# L^{-1} U C^{-1} V^H L^{-1} rhs
linv_u_capinv_vh_linv_rhs = l.solve(u_capinv_vh_linv_rhs, adjoint=adjoint)
# L^{-1} - L^{-1} U C^{-1} V^H L^{-1}
return linv_rhs - linv_u_capinv_vh_linv_rhs
示例9: _solve
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def _solve(self, rhs, adjoint=False):
if self._is_spd:
return linalg_ops.cholesky_solve(self._chol, rhs)
return linalg_ops.matrix_solve(self._matrix, rhs, adjoint=adjoint)
示例10: _MatrixSolveGrad
# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import matrix_solve [as 別名]
def _MatrixSolveGrad(op, grad):
"""Gradient for MatrixSolve."""
a = op.inputs[0]
adjoint_a = op.get_attr("adjoint")
c = op.outputs[0]
grad_b = linalg_ops.matrix_solve(a, grad, adjoint=not adjoint_a)
if adjoint_a:
grad_a = -math_ops.batch_matmul(c, grad_b, adj_y=True)
else:
grad_a = -math_ops.batch_matmul(grad_b, c, adj_y=True)
return (grad_a, grad_b)