當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg_ops.cholesky_solve方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.linalg_ops.cholesky_solve方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg_ops.cholesky_solve方法的具體用法?Python linalg_ops.cholesky_solve怎麽用?Python linalg_ops.cholesky_solve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.linalg_ops的用法示例。


在下文中一共展示了linalg_ops.cholesky_solve方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _batch_solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def _batch_solve(self, rhs):
    return linalg_ops.cholesky_solve(self._chol, rhs) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:operator_pd_cholesky.py

示例2: _sqrt_solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def _sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    # TODO(jvdillon) Determine if recursively applying rank-1 updates is more
    # efficient.  May not be possible because a general n x n matrix can be
    # represeneted as n rank-1 updates, and solving with this matrix is always
    # done in O(n^3) time.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=False)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, transpose_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:32,代碼來源:operator_pd_vdvt_update.py

示例3: _batch_sqrt_solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def _batch_sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=True)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, adjoint_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:operator_pd_vdvt_update.py

示例4: _solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
    """Default implementation of _solve."""
    if self.is_square is False:
      raise NotImplementedError(
          "Solve is not yet implemented for non-square operators.")
    logging.warn(
        "Using (possibly slow) default implementation of solve."
        "  Requires conversion to a dense matrix and O(N^3) operations.")
    rhs = linear_operator_util.matrix_adjoint(rhs) if adjoint_arg else rhs
    if self._can_use_cholesky():
      return linalg_ops.cholesky_solve(self._get_cached_chol(), rhs)
    return linalg_ops.matrix_solve(
        self._get_cached_dense_matrix(), rhs, adjoint=adjoint) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:15,代碼來源:linear_operator.py

示例5: _solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
    if self.base_operator.is_non_singular is False:
      raise ValueError(
          "Solve not implemented unless this is a perturbation of a "
          "non-singular LinearOperator.")
    # The Woodbury formula gives:
    # https://en.wikipedia.org/wiki/Woodbury_matrix_identity
    #   (L + UDV^H)^{-1}
    #   = L^{-1} - L^{-1} U (D^{-1} + V^H L^{-1} U)^{-1} V^H L^{-1}
    #   = L^{-1} - L^{-1} U C^{-1} V^H L^{-1}
    # where C is the capacitance matrix, C := D^{-1} + V^H L^{-1} U
    # Note also that, with ^{-H} being the inverse of the adjoint,
    #   (L + UDV^H)^{-H}
    #   = L^{-H} - L^{-H} V C^{-H} U^H L^{-H}
    l = self.base_operator
    if adjoint:
      v = self.u
      u = self.v
    else:
      v = self.v
      u = self.u

    # L^{-1} rhs
    linv_rhs = l.solve(rhs, adjoint=adjoint, adjoint_arg=adjoint_arg)
    # V^H L^{-1} rhs
    vh_linv_rhs = math_ops.matmul(v, linv_rhs, adjoint_a=True)
    # C^{-1} V^H L^{-1} rhs
    if self._use_cholesky:
      capinv_vh_linv_rhs = linalg_ops.cholesky_solve(
          self._chol_capacitance, vh_linv_rhs)
    else:
      capinv_vh_linv_rhs = linalg_ops.matrix_solve(
          self._capacitance, vh_linv_rhs, adjoint=adjoint)
    # U C^{-1} V^H M^{-1} rhs
    u_capinv_vh_linv_rhs = math_ops.matmul(u, capinv_vh_linv_rhs)
    # L^{-1} U C^{-1} V^H L^{-1} rhs
    linv_u_capinv_vh_linv_rhs = l.solve(u_capinv_vh_linv_rhs, adjoint=adjoint)

    # L^{-1} - L^{-1} U C^{-1} V^H L^{-1}
    return linv_rhs - linv_u_capinv_vh_linv_rhs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:42,代碼來源:linear_operator_udvh_update.py

示例6: _solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def _solve(self, rhs, adjoint=False):
    if self._is_spd:
      return linalg_ops.cholesky_solve(self._chol, rhs)
    return linalg_ops.matrix_solve(self._matrix, rhs, adjoint=adjoint) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:6,代碼來源:linear_operator_matrix.py

示例7: _batch_sqrt_solve

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def _batch_sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=True)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.batch_matmul(v, minv_rhs, adj_x=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.batch_matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:operator_pd_vdvt_update.py

示例8: posdef_inv_cholesky

# 需要導入模塊: from tensorflow.python.ops import linalg_ops [as 別名]
# 或者: from tensorflow.python.ops.linalg_ops import cholesky_solve [as 別名]
def posdef_inv_cholesky(tensor, identity, damping):
    """Computes inverse(tensor + damping * identity) with Cholesky."""
    chol = linalg_ops.cholesky(tensor + damping * identity)
    return linalg_ops.cholesky_solve(chol, identity) 
開發者ID:gd-zhang,項目名稱:noisy-K-FAC,代碼行數:6,代碼來源:utils.py


注:本文中的tensorflow.python.ops.linalg_ops.cholesky_solve方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。