本文整理匯總了Python中tensorflow.python.ops.io_ops.restore_v2方法的典型用法代碼示例。如果您正苦於以下問題:Python io_ops.restore_v2方法的具體用法?Python io_ops.restore_v2怎麽用?Python io_ops.restore_v2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.io_ops
的用法示例。
在下文中一共展示了io_ops.restore_v2方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: ReadNpArrays
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def ReadNpArrays(file_prefix, nmap):
"""Reads from a tf checkpoint to fill in values of a NesteMap.
Args:
file_prefix: A TF checkpoint filename prefix.
nmap: A NestedMap of numpy dtypes.
Returns:
A NestedMap with numpy arrays compatible w/ nmap.
"""
g = tf.Graph()
with g.as_default():
reads = []
for name, dtype in nmap.FlattenItems():
reads.append(
io_ops.restore_v2(
prefix=file_prefix,
tensor_names=[name],
shape_and_slices=[""],
dtypes=[dtype])[0])
with tf.Session(graph=g) as sess:
vals = sess.run(reads)
return nmap.Pack(vals)
示例2: _set_checkpoint_initializer
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def _set_checkpoint_initializer(variable,
ckpt_file,
tensor_name,
slice_spec,
name="checkpoint_initializer"):
"""Overrides given variable's initialization op.
Sets variable initializer to assign op that initializes variable from tensor's
value in the checkpoint.
Args:
variable: `tf.Variable` object.
ckpt_file: string, full path of the checkpoint.
tensor_name: Name of the tensor to load from the checkpoint.
slice_spec: Slice specification for loading partitioned tensors.
name: Name of the operation.
"""
base_type = variable.dtype.base_dtype
restore_op = io_ops.restore_v2(
ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0]
variable._initializer_op = state_ops.assign(variable, restore_op) # pylint:disable=protected-access
示例3: restore_op
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def restore_op(self, filename_tensor, saveable, preferred_shard):
tensors = []
for spec in saveable.specs:
# Ignore the moving_mean and moving_variance in other towers.
if spec.name.startswith('replicated_'):
if not spec.name.startswith('replicated_0') and 'BatchNorm/moving_' in spec.name:
continue
tensors.append(
io_ops.restore_v2(
filename_tensor,
['/'.join(spec.name.split('/')[1:])],
[spec.slice_spec],
[spec.tensor.dtype])[0])
else:
tensors.append(
io_ops.restore_v2(
filename_tensor,
[spec.name],
[spec.slice_spec],
[spec.tensor.dtype])[0])
return tensors
示例4: _set_checkpoint_initializer
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def _set_checkpoint_initializer(variable,
ckpt_file,
tensor_name,
slice_spec,
name="checkpoint_initializer"):
"""Overrides given variable's initialization op.
Sets variable initializer to assign op that initializes variable from tensor's
value in the checkpoint.
Args:
variable: `tf.Variable` object.
ckpt_file: string, full path of the checkpoint.
tensor_name: Name of the tensor to load from the checkpoint.
slice_spec: Slice specification for loading partitioned tensors.
name: Name of the operation.
"""
base_type = variable.dtype.base_dtype
with ops.colocate_with(variable):
restore_op = io_ops.restore_v2(
ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0]
variable._initializer_op = state_ops.assign(variable, restore_op) # pylint:disable=protected-access
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:24,代碼來源:checkpoint_utils.py
示例5: _InputBatch
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def _InputBatch(self):
p = self.params
@tf.function
def ReadData():
x, y = io_ops.restore_v2(p.ckpt, [p.data, p.label], [''] * 2,
[p.data_dtype, p.label_dtype])
# Always convert to float32.
return tf.cast(x, tf.float32), tf.cast(y, tf.float32)
# Loads data and label into memory and keep it around.
data, label = ops.cached_call(
f=ReadData.get_concrete_function(), T=[tf.float32, tf.float32])
b, shape = self.InfeedBatchSize(), list(p.data_shape)
data = tf.reshape(data, [-1] + shape)
label = tf.reshape(label, [-1])
label = py_utils.HasShape(label, [tf.shape(data)[0]])
sample_ids = ops.random_permutation_sequence(
num=p.num_samples,
batch=b,
repeat=p.repeat,
seed=p.random_seed if p.random_seed else 0)
n = tf.shape(sample_ids)[0]
raw = py_utils.PadOrTrimTo(tf.gather(data, sample_ids), [b] + shape)
ret = py_utils.NestedMap(
raw=raw,
data=self._Preprocess(raw),
label=py_utils.PadOrTrimTo(tf.gather(label, sample_ids), [b]),
weight=py_utils.PadOrTrimTo(tf.ones([n], dtype=tf.float32), [b]))
if not py_utils.use_tpu():
ret['sample_ids'] = sample_ids
return ret
示例6: _BuildRestore
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def _BuildRestore(self):
"""Builds restore ops."""
assign_ops = []
for var in self._vars:
val, = io_ops.restore_v2(
prefix=self._restore_prefix_ph,
tensor_names=[_VarKey(var)],
shape_and_slices=[""],
dtypes=[var.dtype])
assign_ops.append(var.assign(val))
self._restore_op = tf.group(*assign_ops)
示例7: restore_op
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def restore_op(self, filename_tensor, saveable, preferred_shard):
"""Create ops to restore 'saveable'.
This is intended to be overridden by subclasses that want to generate
different Ops.
Args:
filename_tensor: String Tensor.
saveable: A BaseSaverBuilder.SaveableObject object.
preferred_shard: Int. Shard to open first when loading a sharded file.
Returns:
A list of Tensors resulting from reading 'saveable' from
'filename'.
"""
# pylint: disable=protected-access
tensors = []
for spec in saveable.specs:
tensors.append(
io_ops.restore_v2(
filename_tensor,
[spec.name],
[spec.slice_spec],
[spec.tensor.dtype])[0])
return tensors
# pylint: enable=unused-argument
示例8: _set_checkpoint_initializer
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def _set_checkpoint_initializer(variable, file_pattern, tensor_name, slice_spec,
name="checkpoint_initializer"):
"""Sets variable initializer to assign op form value in checkpoint's tensor.
Args:
variable: `Variable` object.
file_pattern: string, where to load checkpoints from.
tensor_name: Name of the `Tensor` to load from checkpoint reader.
slice_spec: Slice specification for loading partitioned variables.
name: Name of the operation.
"""
base_type = variable.dtype.base_dtype
restore_op = io_ops.restore_v2(
file_pattern, [tensor_name], [slice_spec], [base_type], name=name)[0]
variable._initializer_op = state_ops.assign(variable, restore_op)
示例9: _set_checkpoint_initializer
# 需要導入模塊: from tensorflow.python.ops import io_ops [as 別名]
# 或者: from tensorflow.python.ops.io_ops import restore_v2 [as 別名]
def _set_checkpoint_initializer(variable,
ckpt_file,
tensor_name,
slice_spec,
name="checkpoint_initializer"):
"""Overrides given variable's initialization op.
Sets variable initializer to assign op that initializes variable from tensor's
value in the checkpoint.
Args:
variable: `tf.Variable` object.
ckpt_file: string, full path of the checkpoint.
tensor_name: Name of the tensor to load from the checkpoint.
slice_spec: Slice specification for loading partitioned tensors.
name: Name of the operation.
"""
base_type = variable.dtype.base_dtype
# Do not colocate with variable since RestoreV2 op only runs on CPU and
# colocation will force variable (and other ops that colocate with variable)
# to be on CPU as well. It is okay to place the variable's initializer op on
# CPU since it will only be run once at the start.
with ops.device(variable.device), ops.device("/cpu:0"):
restore_op = io_ops.restore_v2(
ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0]
names_to_saveables = saveable_object_util.op_list_to_dict([variable])
saveable_objects = []
for name, op in names_to_saveables.items():
for s in saveable_object_util.saveable_objects_for_op(op, name):
saveable_objects.append(s)
assert len(saveable_objects) == 1 # Should be only one variable.
init_op = saveable_objects[0].restore([restore_op], restored_shapes=None)
# pylint:disable=protected-access
variable._initializer_op = init_op
restore_op.set_shape(variable.shape)
variable._initial_value = restore_op
# pylint:enable=protected-access