當前位置: 首頁>>代碼示例>>Python>>正文


Python init_ops.truncated_normal_initializer方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.init_ops.truncated_normal_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python init_ops.truncated_normal_initializer方法的具體用法?Python init_ops.truncated_normal_initializer怎麽用?Python init_ops.truncated_normal_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.init_ops的用法示例。


在下文中一共展示了init_ops.truncated_normal_initializer方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __new__

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def __new__(cls,
              column_name,
              size,
              dimension,
              hash_key,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      logging.warn("The default stddev value of initializer will change from "
                   "\"0.1\" to \"1/sqrt(dimension)\" after 2017/02/25.")
      stddev = 0.1
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_ScatteredEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                         dimension, hash_key,
                                                         combiner,
                                                         initializer) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:feature_column.py

示例2: __new__

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def __new__(cls,
              column_name,
              size,
              dimension,
              hash_key,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      stddev = 0.1
      # TODO(b/25671353): Better initial value?
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_ScatteredEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                         dimension, hash_key,
                                                         combiner,
                                                         initializer) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:21,代碼來源:feature_column.py

示例3: testNoScopes

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def testNoScopes(self):
    init_value0 = np.asarray([1.0, 3.0, 9.0]).reshape((1, 3, 1))
    init_value1 = np.asarray([2.0, 4.0, 6.0, 8.0]).reshape((2, 1, 2))

    with self.cached_session() as sess:
      initializer = init_ops.truncated_normal_initializer(stddev=.1)
      var0 = variables_lib2.variable(
          'my_var0', shape=[1, 3, 1], initializer=initializer)
      var1 = variables_lib2.variable(
          'my_var1', shape=[2, 1, 2], initializer=initializer)

      var_names_to_values = {'my_var0': init_value0, 'my_var1': init_value1}
      assign_op, feed_dict = variables_lib2.assign_from_values(
          var_names_to_values)

      # Initialize the variables.
      sess.run(variables_lib.global_variables_initializer())

      # Perform the assignment.
      sess.run(assign_op, feed_dict)

      # Request and test the variable values:
      var0, var1 = sess.run([var0, var1])
      self.assertAllEqual(init_value0, var0)
      self.assertAllEqual(init_value1, var1) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:27,代碼來源:variables_test.py

示例4: testGradientWithZeroWeight

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def testGradientWithZeroWeight(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)

      inputs = array_ops.ones((2, 3))
      weights = variable_scope.get_variable(
          'weights',
          shape=[3, 4],
          initializer=init_ops.truncated_normal_initializer())
      predictions = math_ops.matmul(inputs, weights)

      optimizer = momentum_lib.MomentumOptimizer(
          learning_rate=0.001, momentum=0.9)
      loss = loss_ops.mean_pairwise_squared_error(predictions, predictions, 0)

      gradients_to_variables = optimizer.compute_gradients(loss)

      init_op = variables.global_variables_initializer()

      with self.cached_session() as sess:
        sess.run(init_op)
        for grad, _ in gradients_to_variables:
          np_grad = sess.run(grad)
          self.assertFalse(np.isnan(np_grad).any()) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:26,代碼來源:loss_ops_test.py

示例5: __new__

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def __new__(cls,
              column_name,
              size,
              dimension,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      stddev = 0.1
      # TODO(b/25671353): Better initial value?
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_HashedEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                      dimension, combiner,
                                                      initializer) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:feature_column.py

示例6: _define_vars

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:decisions_to_data.py

示例7: _define_vars

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:16,代碼來源:decisions_to_data.py

示例8: testWithScopes

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def testWithScopes(self):
    init_value0 = np.asarray([1.0, 3.0, 9.0]).reshape((1, 3, 1))
    init_value1 = np.asarray([2.0, 4.0, 6.0, 8.0]).reshape((2, 1, 2))

    with self.cached_session() as sess:
      initializer = init_ops.truncated_normal_initializer(stddev=.1)

      with variable_scope.variable_scope('my_model/my_layer0'):
        var0 = variables_lib2.variable(
            'my_var0', shape=[1, 3, 1], initializer=initializer)
      with variable_scope.variable_scope('my_model/my_layer1'):
        var1 = variables_lib2.variable(
            'my_var1', shape=[2, 1, 2], initializer=initializer)

      var_names_to_values = {
          'my_model/my_layer0/my_var0': init_value0,
          'my_model/my_layer1/my_var1': init_value1
      }
      assign_op, feed_dict = variables_lib2.assign_from_values(
          var_names_to_values)

      # Initialize the variables.
      sess.run(variables_lib.global_variables_initializer())

      # Perform the assignment.
      sess.run(assign_op, feed_dict)

      # Request and test the variable values:
      var0, var1 = sess.run([var0, var1])
      self.assertAllEqual(init_value0, var0)
      self.assertAllEqual(init_value1, var1) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:33,代碼來源:variables_test.py

示例9: embedding_column

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def embedding_column(sparse_id_column,
                     dimension,
                     combiner=None,
                     initializer=None,
                     ckpt_to_load_from=None,
                     tensor_name_in_ckpt=None):
  """Creates an `_EmbeddingColumn`.

  Args:
    sparse_id_column: A `_SparseColumn` which is created by for example
      `sparse_column_with_*` or crossed_column functions. Note that `combiner`
      defined in `sparse_id_column` is ignored.
    dimension: An integer specifying dimension of the embedding.
    combiner: A string specifying how to reduce if there are multiple entries
      in a single row. Currently "mean", "sqrtn" and "sum" are supported. Each
      of this can be considered an example level normalization on the column:
        * "sum": do not normalize
        * "mean": do l1 normalization
        * "sqrtn": do l2 normalization
      For more information: `tf.embedding_lookup_sparse`.
    initializer: A variable initializer function to be used in embedding
      variable initialization. If not specified, defaults to
      `tf.truncated_normal_initializer` with mean 0.0 and standard deviation
      1/sqrt(sparse_id_column.length).
    ckpt_to_load_from: (Optional). String representing checkpoint name/pattern
      to restore the column weights. Required if `tensor_name_in_ckpt` is not
      None.
    tensor_name_in_ckpt: (Optional). Name of the `Tensor` in the provided
      checkpoint from which to restore the column weights. Required if
      `ckpt_to_load_from` is not None.

  Returns:
    An `_EmbeddingColumn`.
  """
  if combiner is None:
    logging.warn("The default value of combiner will change from \"mean\" "
                 "to \"sqrtn\" after 2016/11/01.")
    combiner = "mean"
  return _EmbeddingColumn(sparse_id_column, dimension, combiner, initializer,
                          ckpt_to_load_from, tensor_name_in_ckpt) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:42,代碼來源:feature_column.py

示例10: _conv2d

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def _conv2d(self, inputs):
        output_filters = 4 * self._filters
        input_shape = inputs.get_shape().as_list()
        kernel_shape = list(self._kernel_size) + [input_shape[-1], output_filters]
        kernel = vs.get_variable("kernel", kernel_shape, dtype=dtypes.float32,
                                 initializer=init_ops.truncated_normal_initializer(stddev=0.02))
        outputs = nn_ops.conv2d(inputs, kernel, [1] * 4, padding='SAME')
        if not self._normalizer_fn:
            bias = vs.get_variable('bias', [output_filters], dtype=dtypes.float32,
                                   initializer=init_ops.zeros_initializer())
            outputs = nn_ops.bias_add(outputs, bias)
        return outputs 
開發者ID:alexlee-gk,項目名稱:video_prediction,代碼行數:14,代碼來源:rnn_ops.py

示例11: _dense

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def _dense(self, inputs):
        num_units = 4 * self._filters
        input_shape = inputs.shape.as_list()
        kernel_shape = [input_shape[-1], num_units]
        kernel = vs.get_variable("weights", kernel_shape, dtype=dtypes.float32,
                                 initializer=init_ops.truncated_normal_initializer(stddev=0.02))
        outputs = tf.matmul(inputs, kernel)
        return outputs 
開發者ID:alexlee-gk,項目名稱:video_prediction,代碼行數:10,代碼來源:rnn_ops.py

示例12: _conv

# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import truncated_normal_initializer [as 別名]
def _conv(args, output_size, filter_size, stddev=0.001, bias=True, bias_start=0.0, scope=None):
  if args is None or (nest.is_sequence(args) and not args):
    raise ValueError("`args` must be specified")
  if not nest.is_sequence(args):
    args = [args]

  # Calculate the total size of arguments on dimension 3.
  # (batch_size x height x width x arg_size)
  total_arg_size = 0
  shapes = [a.get_shape().as_list() for a in args]
  height = shapes[0][1]
  width  = shapes[0][2]
  for shape in shapes:
    if len(shape) != 4:
      raise ValueError("Conv is expecting 3D arguments: %s" % str(shapes))
    if not shape[3]:
      raise ValueError("Conv expects shape[3] of arguments: %s" % str(shapes))
    if shape[1] == height and shape[2] == width:
      total_arg_size += shape[3]
    else :
      raise ValueError("Inconsistent height and width size in arguments: %s" % str(shapes))
  
  with vs.variable_scope(scope or "Conv"):
    kernel = vs.get_variable("Kernel", 
      [filter_size[0], filter_size[1], total_arg_size, output_size],
      initializer=init_ops.truncated_normal_initializer(stddev=stddev))
    
    if len(args) == 1:
      res = tf.nn.conv2d(args[0], kernel, [1, 1, 1, 1], padding='SAME')
    else:
      res = tf.nn.conv2d(array_ops.concat(3, args), kernel, [1, 1, 1, 1], padding='SAME')

    if not bias: return res
    bias_term = vs.get_variable( "Bias", [output_size],
      initializer=init_ops.constant_initializer(bias_start))
  return res + bias_term 
開發者ID:iwyoo,項目名稱:ConvLSTMCell-tensorflow,代碼行數:38,代碼來源:ConvLSTMCell.py


注:本文中的tensorflow.python.ops.init_ops.truncated_normal_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。