本文整理匯總了Python中tensorflow.python.ops.init_ops.random_normal_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python init_ops.random_normal_initializer方法的具體用法?Python init_ops.random_normal_initializer怎麽用?Python init_ops.random_normal_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.init_ops
的用法示例。
在下文中一共展示了init_ops.random_normal_initializer方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: embed_labels
# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import random_normal_initializer [as 別名]
def embed_labels(inputs, num_classes, output_dim, sn,
weight_decay_rate=1e-5,
reuse=None, scope=None):
# TODO move regularizer definitions to model
weights_regularizer = ly.l2_regularizer(weight_decay_rate)
with tf.variable_scope(scope, 'embedding', [inputs], reuse=reuse) as sc:
inputs = tf.convert_to_tensor(inputs)
weights = tf.get_variable(name="weights", shape=(num_classes, output_dim),
initializer=init_ops.random_normal_initializer)
# Spectral Normalization
if sn:
weights = spectral_normed_weight(weights, num_iters=1, update_collection=Config.SPECTRAL_NORM_UPDATE_OPS)
embed_out = tf.nn.embedding_lookup(weights, inputs)
return embed_out
示例2: random_normal_variable
# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import random_normal_initializer [as 別名]
def random_normal_variable(shape, mean, scale, dtype=None, name=None,
seed=None):
"""Instantiates a variable with values drawn from a normal distribution.
Arguments:
shape: Tuple of integers, shape of returned Keras variable.
mean: Float, mean of the normal distribution.
scale: Float, standard deviation of the normal distribution.
dtype: String, dtype of returned Keras variable.
name: String, name of returned Keras variable.
seed: Integer, random seed.
Returns:
A Keras variable, filled with drawn samples.
Example:
```python
# TensorFlow example
>>> kvar = K.random_normal_variable((2,3), 0, 1)
>>> kvar
<tensorflow.python.ops.variables.Variable object at 0x10ab12dd0>
>>> K.eval(kvar)
array([[ 1.19591331, 0.68685907, -0.63814116],
[ 0.92629528, 0.28055015, 1.70484698]], dtype=float32)
```
"""
if dtype is None:
dtype = floatx()
shape = tuple(map(int, shape))
tf_dtype = _convert_string_dtype(dtype)
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e8)
value = init_ops.random_normal_initializer(
mean, scale, dtype=tf_dtype, seed=seed)(shape)
return variable(value, dtype=dtype, name=name)
示例3: random_normal_variable
# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import random_normal_initializer [as 別名]
def random_normal_variable(shape, mean, scale, dtype=None, name=None,
seed=None):
"""Instantiates a variable with values drawn from a normal distribution.
Arguments:
shape: Tuple of integers, shape of returned Keras variable.
mean: Float, mean of the normal distribution.
scale: Float, standard deviation of the normal distribution.
dtype: String, dtype of returned Keras variable.
name: String, name of returned Keras variable.
seed: Integer, random seed.
Returns:
A Keras variable, filled with drawn samples.
Example:
```python
# TensorFlow example
>>> kvar = K.random_normal_variable((2,3), 0, 1)
>>> kvar
<tensorflow.python.ops.variables.Variable object at 0x10ab12dd0>
>>> K.eval(kvar)
array([[ 1.19591331, 0.68685907, -0.63814116],
[ 0.92629528, 0.28055015, 1.70484698]], dtype=float32)
```
"""
if dtype is None:
dtype = floatx()
tf_dtype = _convert_string_dtype(dtype)
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e8)
value = init_ops.random_normal_initializer(
mean, scale, dtype=tf_dtype, seed=seed)(shape)
return variable(value, dtype=dtype, name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:37,代碼來源:backend.py
示例4: linear_regression
# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import random_normal_initializer [as 別名]
def linear_regression(x, y, init_mean=None, init_stddev=1.0):
"""Creates linear regression TensorFlow subgraph.
Args:
x: tensor or placeholder for input features.
y: tensor or placeholder for labels.
init_mean: the mean value to use for initialization.
init_stddev: the standard devation to use for initialization.
Returns:
Predictions and loss tensors.
Side effects:
The variables linear_regression.weights and linear_regression.bias are
initialized as follows. If init_mean is not None, then initialization
will be done using a random normal initializer with the given init_mean
and init_stddv. (These may be set to 0.0 each if a zero initialization
is desirable for convex use cases.) If init_mean is None, then the
uniform_unit_scaling_initialzer will be used.
"""
with vs.variable_scope('linear_regression'):
scope_name = vs.get_variable_scope().name
summary.histogram('%s.x' % scope_name, x)
summary.histogram('%s.y' % scope_name, y)
dtype = x.dtype.base_dtype
y_shape = y.get_shape()
if len(y_shape) == 1:
output_shape = 1
else:
output_shape = y_shape[1]
# Set up the requested initialization.
if init_mean is None:
weights = vs.get_variable(
'weights', [x.get_shape()[1], output_shape], dtype=dtype)
bias = vs.get_variable('bias', [output_shape], dtype=dtype)
else:
weights = vs.get_variable(
'weights', [x.get_shape()[1], output_shape],
initializer=init_ops.random_normal_initializer(
init_mean, init_stddev, dtype=dtype),
dtype=dtype)
bias = vs.get_variable(
'bias', [output_shape],
initializer=init_ops.random_normal_initializer(
init_mean, init_stddev, dtype=dtype),
dtype=dtype)
summary.histogram('%s.weights' % scope_name, weights)
summary.histogram('%s.bias' % scope_name, bias)
return losses_ops.mean_squared_error_regressor(x, y, weights, bias)
示例5: build
# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import random_normal_initializer [as 別名]
def build(self, inputs_shape):
if inputs_shape[1].value is None:
raise ValueError("Expected inputs.shape[-1] to be known, saw shape: %s"
% inputs_shape)
input_depth = inputs_shape[1].value
if self._input_initializer is None:
self._input_initializer = init_ops.random_normal_initializer(mean=0.0,
stddev=0.001)
self._input_kernel = self.add_variable(
"input_kernel",
shape=[input_depth, self._num_units],
initializer=self._input_initializer)
if self._recurrent_initializer is None:
self._recurrent_initializer = init_ops.constant_initializer(1.)
self._recurrent_kernel = self.add_variable(
"recurrent_kernel",
shape=[self._num_units],
initializer=self._recurrent_initializer)
# Clip the absolute values of the recurrent weights to the specified minimum
if self._recurrent_min_abs:
abs_kernel = math_ops.abs(self._recurrent_kernel)
min_abs_kernel = math_ops.maximum(abs_kernel, self._recurrent_min_abs)
self._recurrent_kernel = math_ops.multiply(
math_ops.sign(self._recurrent_kernel),
min_abs_kernel
)
# Clip the absolute values of the recurrent weights to the specified maximum
if self._recurrent_max_abs:
self._recurrent_kernel = clip_ops.clip_by_value(self._recurrent_kernel,
-self._recurrent_max_abs,
self._recurrent_max_abs)
self._bias = self.add_variable(
"bias",
shape=[self._num_units],
initializer=init_ops.zeros_initializer(dtype=self.dtype))
self.built = True
示例6: linear_regression
# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import random_normal_initializer [as 別名]
def linear_regression(x, y, init_mean=None, init_stddev=1.0):
"""Creates linear regression TensorFlow subgraph.
Args:
x: tensor or placeholder for input features.
y: tensor or placeholder for labels.
init_mean: the mean value to use for initialization.
init_stddev: the standard devation to use for initialization.
Returns:
Predictions and loss tensors.
Side effects:
The variables linear_regression.weights and linear_regression.bias are
initialized as follows. If init_mean is not None, then initialization
will be done using a random normal initializer with the given init_mean
and init_stddv. (These may be set to 0.0 each if a zero initialization
is desirable for convex use cases.) If init_mean is None, then the
uniform_unit_scaling_initialzer will be used.
"""
with vs.variable_scope('linear_regression'):
scope_name = vs.get_variable_scope().name
summary.histogram('%s.x' % scope_name, x)
summary.histogram('%s.y' % scope_name, y)
dtype = x.dtype.base_dtype
y_shape = y.get_shape()
if len(y_shape) == 1:
output_shape = 1
else:
output_shape = y_shape[1]
# Set up the requested initialization.
if init_mean is None:
weights = vs.get_variable(
'weights', [x.get_shape()[1], output_shape], dtype=dtype)
bias = vs.get_variable('bias', [output_shape], dtype=dtype)
else:
weights = vs.get_variable('weights', [x.get_shape()[1], output_shape],
initializer=init_ops.random_normal_initializer(
init_mean, init_stddev, dtype=dtype),
dtype=dtype)
bias = vs.get_variable('bias', [output_shape],
initializer=init_ops.random_normal_initializer(
init_mean, init_stddev, dtype=dtype),
dtype=dtype)
summary.histogram('%s.weights' % scope_name, weights)
summary.histogram('%s.bias' % scope_name, bias)
return losses_ops.mean_squared_error_regressor(x, y, weights, bias)
示例7: build
# 需要導入模塊: from tensorflow.python.ops import init_ops [as 別名]
# 或者: from tensorflow.python.ops.init_ops import random_normal_initializer [as 別名]
def build(self, inputs_shape):
'''construct the IndRNN Cell'''
if inputs_shape[1].value is None:
raise ValueError("Expected input shape[1] is known")
input_depth = inputs_shape[1]
if self._input_kernel_initializer is None:
self._input_kernel_initializer = init_ops.random_normal_initializer(mean=0,
stddev=1e-3)
# matrix W
self._input_kernel = self.add_variable(
"input_kernel",
shape=[input_depth, self._num_units],
initializer=self._input_kernel_initializer
)
if self._recurrent_recurrent_kernel_initializer is None:
self._recurrent_recurrent_kernel_initializer = init_ops.constant_initializer(1.)
# matrix U
self._recurrent_kernel = self.add_variable(
"recurrent_kernel",
shape=[self._num_units],
initializer=self._recurrent_recurrent_kernel_initializer
)
# Clip the U to min - max
if self._recurrent_min_abs:
abs_kernel = math_ops.abs(self._recurrent_kernel)
min_abs_kernel = math_ops.maximum(abs_kernel, self._recurrent_min_abs)
self._recurrent_kernel = math_ops.multiply(
math_ops.sign(self._recurrent_kernel),
min_abs_kernel
)
if self._recurrent_max_abs:
self._recurrent_kernel = clip_ops.clip_by_value(
self._recurrent_kernel,
-self._recurrent_max_abs,
self._recurrent_max_abs
)
self._bias = self.add_variable(
"bias",
shape=[self._num_units],
initializer=init_ops.zeros_initializer(dtype=self.dtype)
)
# built finished
self.built = True