本文整理匯總了Python中tensorflow.python.ops.gen_nn_ops.relu方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_nn_ops.relu方法的具體用法?Python gen_nn_ops.relu怎麽用?Python gen_nn_ops.relu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.gen_nn_ops
的用法示例。
在下文中一共展示了gen_nn_ops.relu方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: crelu
# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
"""Computes Concatenated ReLU.
Concatenates a ReLU which selects only the positive part of the activation
with a ReLU which selects only the *negative* part of the activation.
Note that as a result this non-linearity doubles the depth of the activations.
Source: [Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.](https://arxiv.org/abs/1603.05201)
Args:
features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `features`.
"""
with ops.name_scope(name, "CRelu", [features]) as name:
features = ops.convert_to_tensor(features, name="features")
c = array_ops.concat([features, -features], -1, name=name)
return gen_nn_ops.relu(c)
示例2: crelu
# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
"""Computes Concatenated ReLU.
Concatenates a ReLU which selects only the positive part of the activation
with a ReLU which selects only the *negative* part of the activation.
Note that as a result this non-linearity doubles the depth of the activations.
Source: https://arxiv.org/abs/1603.05201
Args:
features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `features`.
"""
with ops.name_scope(name, "CRelu", [features]) as name:
features = ops.convert_to_tensor(features, name="features")
c = array_ops.concat([features, -features], -1, name=name)
return gen_nn_ops.relu(c)
示例3: crelu
# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
"""Computes Concatenated ReLU.
Concatenates a ReLU which selects only the positive part of the activation
with a ReLU which selects only the *negative* part of the activation.
Note that as a result this non-linearity doubles the depth of the activations.
Source: https://arxiv.org/abs/1603.05201
Args:
features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `features`.
"""
with ops.name_scope(name, "CRelu", [features]) as name:
features = ops.convert_to_tensor(features, name="features")
return gen_nn_ops.relu(array_ops.concat(array_ops.rank(features) - 1,
[features, -features], name=name))
示例4: crelu
# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
"""Computes Concatenated ReLU.
Concatenates a ReLU which selects only the positive part of the activation
with a ReLU which selects only the *negative* part of the activation.
Note that as a result this non-linearity doubles the depth of the activations.
Source: [Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.](https://arxiv.org/abs/1603.05201)
Args:
features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `features`.
"""
with ops.name_scope(name, "CRelu", [features]) as name:
features = ops.convert_to_tensor(features, name="features")
c = array_ops.concat([features, -features], -1, name=name)
return gen_nn_ops.relu(c)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:nn_ops.py
示例5: per_image_standardization
# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def per_image_standardization(image):
"""Linearly scales `image` to have zero mean and unit norm.
This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
of all values in image, and
`adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.
`stddev` is the standard deviation of all values in `image`. It is capped
away from zero to protect against division by 0 when handling uniform images.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
Returns:
The standardized image with same shape as `image`.
Raises:
ValueError: if the shape of 'image' is incompatible with this function.
"""
image = ops.convert_to_tensor(image, name='image')
image = control_flow_ops.with_dependencies(
_Check3DImage(image, require_static=False), image)
num_pixels = math_ops.reduce_prod(array_ops.shape(image))
image = math_ops.cast(image, dtype=dtypes.float32)
image_mean = math_ops.reduce_mean(image)
variance = (math_ops.reduce_mean(math_ops.square(image)) -
math_ops.square(image_mean))
variance = gen_nn_ops.relu(variance)
stddev = math_ops.sqrt(variance)
# Apply a minimum normalization that protects us against uniform images.
min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
pixel_value_scale = math_ops.maximum(stddev, min_stddev)
pixel_value_offset = image_mean
image = math_ops.subtract(image, pixel_value_offset)
image = math_ops.div(image, pixel_value_scale)
return image
示例6: per_image_standardization
# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def per_image_standardization(image):
"""Linearly scales `image` to have zero mean and unit norm.
This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
of all values in image, and
`adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.
`stddev` is the standard deviation of all values in `image`. It is capped
away from zero to protect against division by 0 when handling uniform images.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
Returns:
The standardized image with same shape as `image`.
Raises:
ValueError: if the shape of 'image' is incompatible with this function.
"""
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
num_pixels = math_ops.reduce_prod(array_ops.shape(image))
image = math_ops.cast(image, dtype=dtypes.float32)
image_mean = math_ops.reduce_mean(image)
variance = (math_ops.reduce_mean(math_ops.square(image)) -
math_ops.square(image_mean))
variance = gen_nn_ops.relu(variance)
stddev = math_ops.sqrt(variance)
# Apply a minimum normalization that protects us against uniform images.
min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
pixel_value_scale = math_ops.maximum(stddev, min_stddev)
pixel_value_offset = image_mean
image = math_ops.subtract(image, pixel_value_offset)
image = math_ops.div(image, pixel_value_scale)
return image
示例7: per_image_standardization
# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def per_image_standardization(image):
"""Linearly scales `image` to have zero mean and unit norm.
This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
of all values in image, and
`adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.
`stddev` is the standard deviation of all values in `image`. It is capped
away from zero to protect against division by 0 when handling uniform images.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
Returns:
The standardized image with same shape as `image`.
Raises:
ValueError: if the shape of 'image' is incompatible with this function.
"""
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
num_pixels = math_ops.reduce_prod(array_ops.shape(image))
image = math_ops.cast(image, dtype=dtypes.float32)
image_mean = math_ops.reduce_mean(image)
variance = (math_ops.reduce_mean(math_ops.square(image)) -
math_ops.square(image_mean))
variance = gen_nn_ops.relu(variance)
stddev = math_ops.sqrt(variance)
# Apply a minimum normalization that protects us against uniform images.
min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
pixel_value_scale = math_ops.maximum(stddev, min_stddev)
pixel_value_offset = image_mean
image = math_ops.sub(image, pixel_value_offset)
image = math_ops.div(image, pixel_value_scale)
return image
# TODO(skye): remove once users switch to per_image_standardization()