當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_nn_ops.relu方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_nn_ops.relu方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_nn_ops.relu方法的具體用法?Python gen_nn_ops.relu怎麽用?Python gen_nn_ops.relu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_nn_ops的用法示例。


在下文中一共展示了gen_nn_ops.relu方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: crelu

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
  """Computes Concatenated ReLU.

  Concatenates a ReLU which selects only the positive part of the activation
  with a ReLU which selects only the *negative* part of the activation.
  Note that as a result this non-linearity doubles the depth of the activations.
  Source: [Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.](https://arxiv.org/abs/1603.05201) 

  Args:
    features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
      `int16`, or `int8`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with the same type as `features`.
  """
  with ops.name_scope(name, "CRelu", [features]) as name:
    features = ops.convert_to_tensor(features, name="features")
    c = array_ops.concat([features, -features], -1, name=name)
    return gen_nn_ops.relu(c) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:nn_ops.py

示例2: crelu

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
  """Computes Concatenated ReLU.

  Concatenates a ReLU which selects only the positive part of the activation
  with a ReLU which selects only the *negative* part of the activation.
  Note that as a result this non-linearity doubles the depth of the activations.
  Source: https://arxiv.org/abs/1603.05201

  Args:
    features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
      `int16`, or `int8`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with the same type as `features`.
  """
  with ops.name_scope(name, "CRelu", [features]) as name:
    features = ops.convert_to_tensor(features, name="features")
    c = array_ops.concat([features, -features], -1, name=name)
    return gen_nn_ops.relu(c) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:nn_ops.py

示例3: crelu

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
  """Computes Concatenated ReLU.

  Concatenates a ReLU which selects only the positive part of the activation
  with a ReLU which selects only the *negative* part of the activation.
  Note that as a result this non-linearity doubles the depth of the activations.
  Source: https://arxiv.org/abs/1603.05201

  Args:
    features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
      `int16`, or `int8`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with the same type as `features`.
  """
  with ops.name_scope(name, "CRelu", [features]) as name:
    features = ops.convert_to_tensor(features, name="features")
    return gen_nn_ops.relu(array_ops.concat(array_ops.rank(features) - 1,
                                            [features, -features], name=name)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:nn_ops.py

示例4: crelu

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def crelu(features, name=None):
  """Computes Concatenated ReLU.

  Concatenates a ReLU which selects only the positive part of the activation
  with a ReLU which selects only the *negative* part of the activation.
  Note that as a result this non-linearity doubles the depth of the activations.
  Source: [Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.](https://arxiv.org/abs/1603.05201)

  Args:
    features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
      `int16`, or `int8`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with the same type as `features`.
  """
  with ops.name_scope(name, "CRelu", [features]) as name:
    features = ops.convert_to_tensor(features, name="features")
    c = array_ops.concat([features, -features], -1, name=name)
    return gen_nn_ops.relu(c) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:nn_ops.py

示例5: per_image_standardization

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def per_image_standardization(image):
  """Linearly scales `image` to have zero mean and unit norm.

  This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
  of all values in image, and
  `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.

  `stddev` is the standard deviation of all values in `image`. It is capped
  away from zero to protect against division by 0 when handling uniform images.

  Args:
    image: 3-D tensor of shape `[height, width, channels]`.

  Returns:
    The standardized image with same shape as `image`.

  Raises:
    ValueError: if the shape of 'image' is incompatible with this function.
  """
  image = ops.convert_to_tensor(image, name='image')
  image = control_flow_ops.with_dependencies(
      _Check3DImage(image, require_static=False), image)
  num_pixels = math_ops.reduce_prod(array_ops.shape(image))

  image = math_ops.cast(image, dtype=dtypes.float32)
  image_mean = math_ops.reduce_mean(image)

  variance = (math_ops.reduce_mean(math_ops.square(image)) -
              math_ops.square(image_mean))
  variance = gen_nn_ops.relu(variance)
  stddev = math_ops.sqrt(variance)

  # Apply a minimum normalization that protects us against uniform images.
  min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
  pixel_value_scale = math_ops.maximum(stddev, min_stddev)
  pixel_value_offset = image_mean

  image = math_ops.subtract(image, pixel_value_offset)
  image = math_ops.div(image, pixel_value_scale)
  return image 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:42,代碼來源:image_ops_impl.py

示例6: per_image_standardization

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def per_image_standardization(image):
  """Linearly scales `image` to have zero mean and unit norm.

  This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
  of all values in image, and
  `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.

  `stddev` is the standard deviation of all values in `image`. It is capped
  away from zero to protect against division by 0 when handling uniform images.

  Args:
    image: 3-D tensor of shape `[height, width, channels]`.

  Returns:
    The standardized image with same shape as `image`.

  Raises:
    ValueError: if the shape of 'image' is incompatible with this function.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  num_pixels = math_ops.reduce_prod(array_ops.shape(image))

  image = math_ops.cast(image, dtype=dtypes.float32)
  image_mean = math_ops.reduce_mean(image)

  variance = (math_ops.reduce_mean(math_ops.square(image)) -
              math_ops.square(image_mean))
  variance = gen_nn_ops.relu(variance)
  stddev = math_ops.sqrt(variance)

  # Apply a minimum normalization that protects us against uniform images.
  min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
  pixel_value_scale = math_ops.maximum(stddev, min_stddev)
  pixel_value_offset = image_mean

  image = math_ops.subtract(image, pixel_value_offset)
  image = math_ops.div(image, pixel_value_scale)
  return image 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:41,代碼來源:image_ops_impl.py

示例7: per_image_standardization

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import relu [as 別名]
def per_image_standardization(image):
  """Linearly scales `image` to have zero mean and unit norm.

  This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
  of all values in image, and
  `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.

  `stddev` is the standard deviation of all values in `image`. It is capped
  away from zero to protect against division by 0 when handling uniform images.

  Args:
    image: 3-D tensor of shape `[height, width, channels]`.

  Returns:
    The standardized image with same shape as `image`.

  Raises:
    ValueError: if the shape of 'image' is incompatible with this function.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  num_pixels = math_ops.reduce_prod(array_ops.shape(image))

  image = math_ops.cast(image, dtype=dtypes.float32)
  image_mean = math_ops.reduce_mean(image)

  variance = (math_ops.reduce_mean(math_ops.square(image)) -
              math_ops.square(image_mean))
  variance = gen_nn_ops.relu(variance)
  stddev = math_ops.sqrt(variance)

  # Apply a minimum normalization that protects us against uniform images.
  min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
  pixel_value_scale = math_ops.maximum(stddev, min_stddev)
  pixel_value_offset = image_mean

  image = math_ops.sub(image, pixel_value_offset)
  image = math_ops.div(image, pixel_value_scale)
  return image


# TODO(skye): remove once users switch to per_image_standardization() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:44,代碼來源:image_ops.py


注:本文中的tensorflow.python.ops.gen_nn_ops.relu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。