當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_nn_ops._fractional_max_pool_grad方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_nn_ops._fractional_max_pool_grad方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_nn_ops._fractional_max_pool_grad方法的具體用法?Python gen_nn_ops._fractional_max_pool_grad怎麽用?Python gen_nn_ops._fractional_max_pool_grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_nn_ops的用法示例。


在下文中一共展示了gen_nn_ops._fractional_max_pool_grad方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _FractionalMaxPoolGrad

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_max_pool_grad [as 別名]
def _FractionalMaxPoolGrad(op, grad_0, unused_grad_1, unused_grad_2):
  """Returns gradient for FractionalMaxPool.

  Since FractionalMaxPool has three outputs, there are three gradients passed in
  for each of the outputs. Only the first one is useful, the other two gradients
  are empty.

  Args:
    op: The FractionalMaxPoolOp.
    grad_0: Gradient with respect to op.outputs[0]
    unused_grad_1: Gradient with respect to op.outputs[1]/row_seq. It is empty.
    unused_grad_2: Gradient with respect to op.outputs[2]/col_seq. It is empty.

  Returns:
    Input backprop for FractionalMaxPool op.
  """
  # pylint: disable=protected-access
  return gen_nn_ops._fractional_max_pool_grad(op.inputs[0], op.outputs[0],
                                              grad_0, op.outputs[1],
                                              op.outputs[2],
                                              op.get_attr("overlapping")) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:nn_grad.py

示例2: testDirectNotUseOverlapping

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_max_pool_grad [as 別名]
def testDirectNotUseOverlapping(self):
    for num_batches in [1, 3]:
      for row_window_size in [2, 5]:
        for col_window_size in [2, 4]:
          num_rows = row_window_size * 5
          num_cols = col_window_size * 7
          for num_channels in [1, 2]:
            input_shape = (num_batches, num_rows, num_cols, num_channels)
            with self.test_session() as _:
              input_tensor = tf.constant(self._GenerateUniqueRandomInputTensor(
                  input_shape))
              window_size = [1, row_window_size, col_window_size, 1]
              stride_size = [1, row_window_size, col_window_size, 1]
              padding = "VALID"
              output_tensor = tf.nn.max_pool(input_tensor, window_size,
                                             stride_size, padding)
              output_data = output_tensor.eval()
              output_backprop = self._PRNG.randint(100, size=output_data.shape)
              input_backprop_tensor = gen_nn_ops._max_pool_grad(input_tensor,
                                                                output_tensor,
                                                                output_backprop,
                                                                window_size,
                                                                stride_size,
                                                                padding)
              input_backprop = input_backprop_tensor.eval()
              row_seq = list(range(0, num_rows + 1, row_window_size))
              col_seq = list(range(0, num_cols + 1, col_window_size))
              fmp_input_backprop_tensor = gen_nn_ops._fractional_max_pool_grad(
                  input_tensor,
                  output_tensor,
                  output_backprop,
                  row_seq,
                  col_seq,
                  overlapping=False)
              fmp_input_backprop = fmp_input_backprop_tensor.eval()
              self.assertShapeEqual(input_backprop, fmp_input_backprop_tensor)
              self.assertAllClose(input_backprop, fmp_input_backprop) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:39,代碼來源:fractional_max_pool_op_test.py

示例3: testDirectUseOverlapping

# 需要導入模塊: from tensorflow.python.ops import gen_nn_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_max_pool_grad [as 別名]
def testDirectUseOverlapping(self):
    for num_batches in [1, 3]:
      for row_window_size in [2, 5]:
        for col_window_size in [2, 4]:
          num_rows = (row_window_size - 1) * 5 + 1
          num_cols = (col_window_size - 1) * 7 + 1
          for num_channels in [1, 2]:
            input_shape = (num_batches, num_rows, num_cols, num_channels)
            with self.test_session() as _:
              input_tensor = tf.constant(self._GenerateUniqueRandomInputTensor(
                  input_shape))
              window_size = [1, row_window_size, col_window_size, 1]
              stride_size = [1, row_window_size - 1, col_window_size - 1, 1]
              padding = "VALID"
              output_tensor = tf.nn.max_pool(input_tensor, window_size,
                                             stride_size, padding)
              output_data = output_tensor.eval()
              output_backprop = self._PRNG.randint(100, size=output_data.shape)
              input_backprop_tensor = gen_nn_ops._max_pool_grad(input_tensor,
                                                                output_tensor,
                                                                output_backprop,
                                                                window_size,
                                                                stride_size,
                                                                padding)
              input_backprop = input_backprop_tensor.eval()
              row_seq = list(range(0, num_rows, row_window_size - 1))
              col_seq = list(range(0, num_cols, col_window_size - 1))
              row_seq[-1] += 1
              col_seq[-1] += 1
              fmp_input_backprop_tensor = gen_nn_ops._fractional_max_pool_grad(
                  input_tensor,
                  output_tensor,
                  output_backprop,
                  row_seq,
                  col_seq,
                  overlapping=True)
              fmp_input_backprop = fmp_input_backprop_tensor.eval()
              self.assertShapeEqual(input_backprop, fmp_input_backprop_tensor)
              self.assertAllClose(input_backprop, fmp_input_backprop) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:41,代碼來源:fractional_max_pool_op_test.py


注:本文中的tensorflow.python.ops.gen_nn_ops._fractional_max_pool_grad方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。