當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_math_ops.real方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_math_ops.real方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops.real方法的具體用法?Python gen_math_ops.real怎麽用?Python gen_math_ops.real使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_math_ops的用法示例。


在下文中一共展示了gen_math_ops.real方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _div_python2

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def _div_python2(x, y, name=None):
  """Divide two values using Python 2 semantics. Used for Tensor.__div__.

  Args:
    x: `Tensor` numerator of real numeric type.
    y: `Tensor` denominator of real numeric type.
    name: A name for the operation (optional).
  Returns:
    `x / y` returns the quotient of x and y.
  """

  with ops.name_scope(name, "div", [x, y]) as name:
    x = ops.convert_to_tensor(x, name="x")
    y = ops.convert_to_tensor(y, name="y", dtype=x.dtype.base_dtype)
    x_dtype = x.dtype.base_dtype
    y_dtype = y.dtype.base_dtype
    if x_dtype != y_dtype:
      raise TypeError("x and y must have the same dtype, got %r != %r" %
                      (x_dtype, y_dtype))
    if x_dtype.is_floating or x_dtype.is_complex:
      return gen_math_ops._real_div(x, y, name=name)
    else:
      return gen_math_ops._floor_div(x, y, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:math_ops.py

示例2: imag

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
  """Returns the imaginary part of a complex number.

  Given a tensor `input` of complex numbers, this operation returns a tensor of
  type `float32` or `float64` that is the imaginary part of each element in
  `input`. All elements in `input` must be complex numbers of the form \\(a +
  bj\\), where *a* is the real part and *b* is the imaginary part returned by
  this operation.

  For example:

  ```
  # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
  tf.imag(input) ==> [4.75, 5.75]
  ```

  Args:
    input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `float32` or `float64`.
  """
  with ops.name_scope(name, "Imag", [input]) as name:
    return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:math_ops.py

示例3: imag

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
  r"""Returns the imaginary part of a complex number.

  Given a tensor `input` of complex numbers, this operation returns a tensor of
  type `float` that is the argument of each element in `input`. All elements in
  `input` must be complex numbers of the form \\(a + bj\\), where *a*
  is the real part and *b* is the imaginary part returned by the operation.

  For example:

  ```python
  x = tf.constant([-2.25 + 4.75j, 3.25 + 5.75j])
  tf.imag(x)  # [4.75, 5.75]
  ```

  Args:
    input: A `Tensor`. Must be one of the following types: `complex64`,
      `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `float32` or `float64`.
  """
  with ops.name_scope(name, "Imag", [input]) as name:
    return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:math_ops.py

示例4: abs

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def abs(x, name=None):
  r"""Computes the absolute value of a tensor.

  Given a tensor of real numbers `x`, this operation returns a tensor
  containing the absolute value of each element in `x`. For example, if x is
  an input element and y is an output element, this operation computes
  \\\\(y = |x|\\\\).

  Args:
    x: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`, or
      `int64`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
      values.
  """
  with ops.name_scope(name, "Abs", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      if x.values.dtype in (dtypes.complex64, dtypes.complex128):
        x_abs = gen_math_ops._complex_abs(
            x.values, Tout=x.values.dtype.real_dtype, name=name)
        return sparse_tensor.SparseTensor(
            indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
      x_abs = gen_math_ops._abs(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
    else:
      x = ops.convert_to_tensor(x, name="x")
      if x.dtype in (dtypes.complex64, dtypes.complex128):
        return gen_math_ops._complex_abs(x, Tout=x.dtype.real_dtype, name=name)
      return gen_math_ops._abs(x, name=name)


# pylint: enable=g-docstring-has-escape


# pylint: disable=redefined-builtin 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:math_ops.py

示例5: complex

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def complex(real, imag, name=None):
  r"""Converts two real numbers to a complex number.

  Given a tensor `real` representing the real part of a complex number, and a
  tensor `imag` representing the imaginary part of a complex number, this
  operation returns complex numbers elementwise of the form \\(a + bj\\), where
  *a* represents the `real` part and *b* represents the `imag` part.

  The input tensors `real` and `imag` must have the same shape.

  For example:

  ```
  # tensor 'real' is [2.25, 3.25]
  # tensor `imag` is [4.75, 5.75]
  tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
  ```

  Args:
    real: A `Tensor`. Must be one of the following types: `float32`,
      `float64`.
    imag: A `Tensor`. Must have the same type as `real`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `complex64` or `complex128`.
  """
  real = ops.convert_to_tensor(real, name="real")
  imag = ops.convert_to_tensor(imag, name="imag")
  with ops.name_scope(name, "Complex", [real, imag]) as name:
    input_types = (real.dtype, imag.dtype)
    if input_types == (dtypes.float64, dtypes.float64):
      Tout = dtypes.complex128
    elif input_types == (dtypes.float32, dtypes.float32):
      Tout = dtypes.complex64
    else:
      raise TypeError("real and imag have incorrect types: "
                      "{} {}".format(real.dtype.name, imag.dtype.name))
    return gen_math_ops._complex(real, imag, Tout=Tout, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:math_ops.py

示例6: real

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def real(input, name=None):
  r"""Returns the real part of a complex number.

  Given a tensor `input` of complex numbers, this operation returns a tensor of
  type `float32` or `float64` that is the real part of each element in `input`.
  All elements in `input` must be complex numbers of the form \\(a + bj\\),
  where *a* is the real part returned by this operation and *b* is the
  imaginary part.

  For example:

  ```
  # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
  tf.real(input) ==> [-2.25, 3.25]
  ```

  If `input` is already real, it is returned unchanged.

  Args:
    input: A `Tensor`. Must have numeric type.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `float32` or `float64`.
  """
  with ops.name_scope(name, "Real", [input]) as name:
    real_dtype = input.dtype.real_dtype
    if input.dtype.base_dtype == real_dtype:
      return input
    return gen_math_ops.real(input, Tout=real_dtype, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:32,代碼來源:math_ops.py

示例7: imag

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
  r"""Returns the imaginary part of a complex number.

  Given a tensor `input` of complex numbers, this operation returns a tensor of
  type `float32` or `float64` that is the imaginary part of each element in
  `input`. All elements in `input` must be complex numbers of the form \\(a +
  bj\\), where *a* is the real part and *b* is the imaginary part returned by
  this operation.

  For example:

  ```
  # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
  tf.imag(input) ==> [4.75, 5.75]
  ```

  Args:
    input: A `Tensor`. Must be one of the following types: `complex64`,
      `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `float32` or `float64`.
  """
  with ops.name_scope(name, "Imag", [input]) as name:
    return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)


# pylint: enable=redefined-outer-name,redefined-builtin 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:31,代碼來源:math_ops.py

示例8: floordiv

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def floordiv(x, y, name=None):
  """Divides `x / y` elementwise, rounding toward the most negative integer.

  The same as `tf.div(x,y)` for integers, but uses `tf.floor(tf.div(x,y))` for
  floating point arguments so that the result is always an integer (though
  possibly an integer represented as floating point).  This op is generated by
  `x // y` floor division in Python 3 and in Python 2.7 with
  `from __future__ import division`.

  Note that for efficiency, `floordiv` uses C semantics for negative numbers
  (unlike Python and Numpy).

  `x` and `y` must have the same type, and the result will have the same type
  as well.

  Args:
    x: `Tensor` numerator of real numeric type.
    y: `Tensor` denominator of real numeric type.
    name: A name for the operation (optional).

  Returns:
    `x / y` rounded down (except possibly towards zero for negative integers).

  Raises:
    TypeError: If the inputs are complex.
  """
  with ops.name_scope(name, "floordiv", [x, y]) as name:
    return gen_math_ops._floor_div(x, y, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:math_ops.py

示例9: conj

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def conj(x, name=None):
  r"""Returns the complex conjugate of a complex number.

  Given a tensor `input` of complex numbers, this operation returns a tensor of
  complex numbers that are the complex conjugate of each element in `input`. The
  complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the
  real part and *b* is the imaginary part.

  The complex conjugate returned by this operation is of the form \\(a - bj\\).

  For example:

      # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
      tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]

  If `x` is real, it is returned unchanged.

  Args:
    x: `Tensor` to conjugate.  Must have numeric type.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` that is the conjugate of `x` (with the same type).

  Raises:
    TypeError: If `x` is not a numeric tensor.
  """
  with ops.name_scope(name, "Conj", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    if x.dtype.is_complex:
      return gen_math_ops._conj(x, name=name)
    elif x.dtype.is_floating or x.dtype.is_integer:
      return x
    else:
      raise TypeError("Expected numeric tensor, got dtype %r" % x.dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:37,代碼來源:math_ops.py

示例10: abs

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def abs(x, name=None):
  """Computes the absolute value of a tensor.

  Given a tensor of real numbers `x`, this operation returns a tensor
  containing the absolute value of each element in `x`. For example, if x is
  an input element and y is an output element, this operation computes
  \\\\(y = |x|\\\\).

  Args:
    x: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`, or
      `int64`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
      values.
  """
  with ops.name_scope(name, "Abs", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      if x.values.dtype in (dtypes.complex64, dtypes.complex128):
        x_abs = gen_math_ops._complex_abs(
            x.values, Tout=x.values.dtype.real_dtype, name=name)
        return sparse_tensor.SparseTensor(
            indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
      x_abs = gen_math_ops._abs(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
    else:
      x = ops.convert_to_tensor(x, name="x")
      if x.dtype in (dtypes.complex64, dtypes.complex128):
        return gen_math_ops._complex_abs(x, Tout=x.dtype.real_dtype, name=name)
      return gen_math_ops._abs(x, name=name)
# pylint: enable=g-docstring-has-escape 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:35,代碼來源:math_ops.py

示例11: complex

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def complex(real, imag, name=None):
  r"""Converts two real numbers to a complex number.

  Given a tensor `real` representing the real part of a complex number, and a
  tensor `imag` representing the imaginary part of a complex number, this
  operation returns complex numbers elementwise of the form \\(a + bj\\), where
  *a* represents the `real` part and *b* represents the `imag` part.

  The input tensors `real` and `imag` must have the same shape.

  For example:

  ```
  # tensor 'real' is [2.25, 3.25]
  # tensor `imag` is [4.75, 5.75]
  tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
  ```

  Args:
    real: A `Tensor`. Must be one of the following types: `float32`,
      `float64`.
    imag: A `Tensor`. Must have the same type as `real`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `complex64` or `complex128`.
  """
  real = ops.convert_to_tensor(real, name="real")
  imag = ops.convert_to_tensor(imag, name="imag")
  with ops.name_scope(name, "Complex", [real, imag]) as name:
    input_types = (real.dtype, imag.dtype)
    if input_types == (dtypes.float64, dtypes.float64):
      Tout = dtypes.complex128
    elif input_types == (dtypes.float32, dtypes.float32):
      Tout = dtypes.complex64
    else:
      raise TypeError("real and imag have incorrect types: "
                      "{} {}".format(real.dtype.name,
                                     imag.dtype.name))
    return gen_math_ops._complex(real, imag, Tout=Tout, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:42,代碼來源:math_ops.py

示例12: imag

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
  """Returns the imaginary part of a complex number.

  Given a tensor `input` of complex numbers, this operation returns a tensor of
  type `float32` or `float64` that is the imaginary part of each element in
  `input`. All elements in `input` must be complex numbers of the form \\(a +
  bj\\), where *a* is the real part and *b* is the imaginary part returned by
  this operation.

  For example:

  ```
  # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
  tf.imag(input) ==> [4.75, 5.75]
  ```

  Args:
    input: A `Tensor`. Must be one of the following types: `complex64`,
      `complex128`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `float32` or `float64`.
  """
  with ops.name_scope(name, "Imag", [input]) as name:
    return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)


# pylint: enable=redefined-outer-name,redefined-builtin 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:31,代碼來源:math_ops.py

示例13: abs

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def abs(x, name=None):
  """Computes the absolute value of a tensor.

  Given a tensor of real numbers `x`, this operation returns a tensor
  containing the absolute value of each element in `x`. For example, if x is
  an input element and y is an output element, this operation computes
  \\\\(y = |x|\\\\).

  See [`tf.complex_abs()`](#tf_complex_abs) to compute the absolute value of a complex
  number.

  Args:
    x: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`, or
      `int64`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
      values.
  """
  with ops.name_scope(name, "Abs", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      if x.values.dtype in (dtypes.complex64, dtypes.complex128):
        x_abs = gen_math_ops.complex_abs(x.values,
            Tout=x.values.dtype.real_dtype, name=name)
        return sparse_tensor.SparseTensor(
            indices=x.indices, values=x_abs, shape=x.shape)
      x_abs = gen_math_ops._abs(x.values, name=name)
      return sparse_tensor.SparseTensor(
          indices=x.indices, values=x_abs, shape=x.shape)
    else:
      x = ops.convert_to_tensor(x, name="x")
      if x.dtype in (dtypes.complex64, dtypes.complex128):
        return gen_math_ops.complex_abs(x, Tout=x.dtype.real_dtype, name=name)
      return gen_math_ops._abs(x, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:37,代碼來源:math_ops.py

示例14: complex

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def complex(real, imag, name=None):
  """Converts two real numbers to a complex number.

  Given a tensor `real` representing the real part of a complex number, and a
  tensor `imag` representing the imaginary part of a complex number, this
  operation returns complex numbers elementwise of the form \\(a + bj\\), where
  *a* represents the `real` part and *b* represents the `imag` part.

  The input tensors `real` and `imag` must have the same shape.

  For example:

  ```
  # tensor 'real' is [2.25, 3.25]
  # tensor `imag` is [4.75, 5.75]
  tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
  ```

  Args:
    real: A `Tensor`. Must be one of the following types: `float32`, `float64`.
    imag: A `Tensor`. Must have the same type as `real`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `complex64` or `complex128`.
  """
  real = ops.convert_to_tensor(real, name="real")
  imag = ops.convert_to_tensor(imag, name="imag")
  with ops.name_scope(name, "Complex", [real, imag]) as name:
    input_types = (real.dtype, imag.dtype)
    if input_types == (dtypes.float64, dtypes.float64):
      Tout = dtypes.complex128
    elif input_types == (dtypes.float32, dtypes.float32):
      Tout = dtypes.complex64
    else:
      raise TypeError("real and imag have incorrect types: "
                      "{} {}".format(real.dtype.name, imag.dtype.name))
    return gen_math_ops._complex(real, imag, Tout=Tout, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:40,代碼來源:math_ops.py

示例15: real

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def real(input, name=None):
  """Returns the real part of a complex number.

  Given a tensor `input` of complex numbers, this operation returns a tensor of
  type `float32` or `float64` that is the real part of each element in `input`.
  All elements in `input` must be complex numbers of the form \\(a + bj\\),
  where *a* is the real part returned by this operation and *b* is the
  imaginary part.

  For example:

  ```
  # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
  tf.real(input) ==> [-2.25, 3.25]
  ```

  If `input` is already real, it is returned unchanged.

  Args:
    input: A `Tensor`. Must have numeric type.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `float32` or `float64`.
  """
  with ops.name_scope(name, "Real", [input]) as name:
    real_dtype = input.dtype.real_dtype
    if input.dtype.base_dtype == real_dtype:
      return input
    return gen_math_ops.real(input, Tout=real_dtype, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:32,代碼來源:math_ops.py


注:本文中的tensorflow.python.ops.gen_math_ops.real方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。