本文整理匯總了Python中tensorflow.python.ops.gen_math_ops.real方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops.real方法的具體用法?Python gen_math_ops.real怎麽用?Python gen_math_ops.real使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops.real方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _div_python2
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def _div_python2(x, y, name=None):
"""Divide two values using Python 2 semantics. Used for Tensor.__div__.
Args:
x: `Tensor` numerator of real numeric type.
y: `Tensor` denominator of real numeric type.
name: A name for the operation (optional).
Returns:
`x / y` returns the quotient of x and y.
"""
with ops.name_scope(name, "div", [x, y]) as name:
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y", dtype=x.dtype.base_dtype)
x_dtype = x.dtype.base_dtype
y_dtype = y.dtype.base_dtype
if x_dtype != y_dtype:
raise TypeError("x and y must have the same dtype, got %r != %r" %
(x_dtype, y_dtype))
if x_dtype.is_floating or x_dtype.is_complex:
return gen_math_ops._real_div(x, y, name=name)
else:
return gen_math_ops._floor_div(x, y, name=name)
示例2: imag
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
"""Returns the imaginary part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the imaginary part of each element in
`input`. All elements in `input` must be complex numbers of the form \\(a +
bj\\), where *a* is the real part and *b* is the imaginary part returned by
this operation.
For example:
```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(input) ==> [4.75, 5.75]
```
Args:
input: A `Tensor`. Must be one of the following types: `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Imag", [input]) as name:
return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)
示例3: imag
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
r"""Returns the imaginary part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float` that is the argument of each element in `input`. All elements in
`input` must be complex numbers of the form \\(a + bj\\), where *a*
is the real part and *b* is the imaginary part returned by the operation.
For example:
```python
x = tf.constant([-2.25 + 4.75j, 3.25 + 5.75j])
tf.imag(x) # [4.75, 5.75]
```
Args:
input: A `Tensor`. Must be one of the following types: `complex64`,
`complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Imag", [input]) as name:
return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:math_ops.py
示例4: abs
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def abs(x, name=None):
r"""Computes the absolute value of a tensor.
Given a tensor of real numbers `x`, this operation returns a tensor
containing the absolute value of each element in `x`. For example, if x is
an input element and y is an output element, this operation computes
\\\\(y = |x|\\\\).
Args:
x: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`, or
`int64`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
values.
"""
with ops.name_scope(name, "Abs", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
if x.values.dtype in (dtypes.complex64, dtypes.complex128):
x_abs = gen_math_ops._complex_abs(
x.values, Tout=x.values.dtype.real_dtype, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
x_abs = gen_math_ops._abs(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
else:
x = ops.convert_to_tensor(x, name="x")
if x.dtype in (dtypes.complex64, dtypes.complex128):
return gen_math_ops._complex_abs(x, Tout=x.dtype.real_dtype, name=name)
return gen_math_ops._abs(x, name=name)
# pylint: enable=g-docstring-has-escape
# pylint: disable=redefined-builtin
示例5: complex
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def complex(real, imag, name=None):
r"""Converts two real numbers to a complex number.
Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.
The input tensors `real` and `imag` must have the same shape.
For example:
```
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor`. Must be one of the following types: `float32`,
`float64`.
imag: A `Tensor`. Must have the same type as `real`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64` or `complex128`.
"""
real = ops.convert_to_tensor(real, name="real")
imag = ops.convert_to_tensor(imag, name="imag")
with ops.name_scope(name, "Complex", [real, imag]) as name:
input_types = (real.dtype, imag.dtype)
if input_types == (dtypes.float64, dtypes.float64):
Tout = dtypes.complex128
elif input_types == (dtypes.float32, dtypes.float32):
Tout = dtypes.complex64
else:
raise TypeError("real and imag have incorrect types: "
"{} {}".format(real.dtype.name, imag.dtype.name))
return gen_math_ops._complex(real, imag, Tout=Tout, name=name)
示例6: real
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def real(input, name=None):
r"""Returns the real part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the real part of each element in `input`.
All elements in `input` must be complex numbers of the form \\(a + bj\\),
where *a* is the real part returned by this operation and *b* is the
imaginary part.
For example:
```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.real(input) ==> [-2.25, 3.25]
```
If `input` is already real, it is returned unchanged.
Args:
input: A `Tensor`. Must have numeric type.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Real", [input]) as name:
real_dtype = input.dtype.real_dtype
if input.dtype.base_dtype == real_dtype:
return input
return gen_math_ops.real(input, Tout=real_dtype, name=name)
示例7: imag
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
r"""Returns the imaginary part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the imaginary part of each element in
`input`. All elements in `input` must be complex numbers of the form \\(a +
bj\\), where *a* is the real part and *b* is the imaginary part returned by
this operation.
For example:
```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(input) ==> [4.75, 5.75]
```
Args:
input: A `Tensor`. Must be one of the following types: `complex64`,
`complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Imag", [input]) as name:
return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)
# pylint: enable=redefined-outer-name,redefined-builtin
示例8: floordiv
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def floordiv(x, y, name=None):
"""Divides `x / y` elementwise, rounding toward the most negative integer.
The same as `tf.div(x,y)` for integers, but uses `tf.floor(tf.div(x,y))` for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
`x // y` floor division in Python 3 and in Python 2.7 with
`from __future__ import division`.
Note that for efficiency, `floordiv` uses C semantics for negative numbers
(unlike Python and Numpy).
`x` and `y` must have the same type, and the result will have the same type
as well.
Args:
x: `Tensor` numerator of real numeric type.
y: `Tensor` denominator of real numeric type.
name: A name for the operation (optional).
Returns:
`x / y` rounded down (except possibly towards zero for negative integers).
Raises:
TypeError: If the inputs are complex.
"""
with ops.name_scope(name, "floordiv", [x, y]) as name:
return gen_math_ops._floor_div(x, y, name=name)
示例9: conj
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def conj(x, name=None):
r"""Returns the complex conjugate of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
complex numbers that are the complex conjugate of each element in `input`. The
complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the
real part and *b* is the imaginary part.
The complex conjugate returned by this operation is of the form \\(a - bj\\).
For example:
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]
If `x` is real, it is returned unchanged.
Args:
x: `Tensor` to conjugate. Must have numeric type.
name: A name for the operation (optional).
Returns:
A `Tensor` that is the conjugate of `x` (with the same type).
Raises:
TypeError: If `x` is not a numeric tensor.
"""
with ops.name_scope(name, "Conj", [x]) as name:
x = ops.convert_to_tensor(x, name="x")
if x.dtype.is_complex:
return gen_math_ops._conj(x, name=name)
elif x.dtype.is_floating or x.dtype.is_integer:
return x
else:
raise TypeError("Expected numeric tensor, got dtype %r" % x.dtype)
示例10: abs
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def abs(x, name=None):
"""Computes the absolute value of a tensor.
Given a tensor of real numbers `x`, this operation returns a tensor
containing the absolute value of each element in `x`. For example, if x is
an input element and y is an output element, this operation computes
\\\\(y = |x|\\\\).
Args:
x: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`, or
`int64`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
values.
"""
with ops.name_scope(name, "Abs", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
if x.values.dtype in (dtypes.complex64, dtypes.complex128):
x_abs = gen_math_ops._complex_abs(
x.values, Tout=x.values.dtype.real_dtype, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
x_abs = gen_math_ops._abs(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
else:
x = ops.convert_to_tensor(x, name="x")
if x.dtype in (dtypes.complex64, dtypes.complex128):
return gen_math_ops._complex_abs(x, Tout=x.dtype.real_dtype, name=name)
return gen_math_ops._abs(x, name=name)
# pylint: enable=g-docstring-has-escape
示例11: complex
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def complex(real, imag, name=None):
r"""Converts two real numbers to a complex number.
Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.
The input tensors `real` and `imag` must have the same shape.
For example:
```
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor`. Must be one of the following types: `float32`,
`float64`.
imag: A `Tensor`. Must have the same type as `real`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64` or `complex128`.
"""
real = ops.convert_to_tensor(real, name="real")
imag = ops.convert_to_tensor(imag, name="imag")
with ops.name_scope(name, "Complex", [real, imag]) as name:
input_types = (real.dtype, imag.dtype)
if input_types == (dtypes.float64, dtypes.float64):
Tout = dtypes.complex128
elif input_types == (dtypes.float32, dtypes.float32):
Tout = dtypes.complex64
else:
raise TypeError("real and imag have incorrect types: "
"{} {}".format(real.dtype.name,
imag.dtype.name))
return gen_math_ops._complex(real, imag, Tout=Tout, name=name)
示例12: imag
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def imag(input, name=None):
"""Returns the imaginary part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the imaginary part of each element in
`input`. All elements in `input` must be complex numbers of the form \\(a +
bj\\), where *a* is the real part and *b* is the imaginary part returned by
this operation.
For example:
```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(input) ==> [4.75, 5.75]
```
Args:
input: A `Tensor`. Must be one of the following types: `complex64`,
`complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Imag", [input]) as name:
return gen_math_ops.imag(input, Tout=input.dtype.real_dtype, name=name)
# pylint: enable=redefined-outer-name,redefined-builtin
示例13: abs
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def abs(x, name=None):
"""Computes the absolute value of a tensor.
Given a tensor of real numbers `x`, this operation returns a tensor
containing the absolute value of each element in `x`. For example, if x is
an input element and y is an output element, this operation computes
\\\\(y = |x|\\\\).
See [`tf.complex_abs()`](#tf_complex_abs) to compute the absolute value of a complex
number.
Args:
x: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`, or
`int64`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
values.
"""
with ops.name_scope(name, "Abs", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
if x.values.dtype in (dtypes.complex64, dtypes.complex128):
x_abs = gen_math_ops.complex_abs(x.values,
Tout=x.values.dtype.real_dtype, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, shape=x.shape)
x_abs = gen_math_ops._abs(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, shape=x.shape)
else:
x = ops.convert_to_tensor(x, name="x")
if x.dtype in (dtypes.complex64, dtypes.complex128):
return gen_math_ops.complex_abs(x, Tout=x.dtype.real_dtype, name=name)
return gen_math_ops._abs(x, name=name)
示例14: complex
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def complex(real, imag, name=None):
"""Converts two real numbers to a complex number.
Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.
The input tensors `real` and `imag` must have the same shape.
For example:
```
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor`. Must be one of the following types: `float32`, `float64`.
imag: A `Tensor`. Must have the same type as `real`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64` or `complex128`.
"""
real = ops.convert_to_tensor(real, name="real")
imag = ops.convert_to_tensor(imag, name="imag")
with ops.name_scope(name, "Complex", [real, imag]) as name:
input_types = (real.dtype, imag.dtype)
if input_types == (dtypes.float64, dtypes.float64):
Tout = dtypes.complex128
elif input_types == (dtypes.float32, dtypes.float32):
Tout = dtypes.complex64
else:
raise TypeError("real and imag have incorrect types: "
"{} {}".format(real.dtype.name, imag.dtype.name))
return gen_math_ops._complex(real, imag, Tout=Tout, name=name)
示例15: real
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import real [as 別名]
def real(input, name=None):
"""Returns the real part of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the real part of each element in `input`.
All elements in `input` must be complex numbers of the form \\(a + bj\\),
where *a* is the real part returned by this operation and *b* is the
imaginary part.
For example:
```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.real(input) ==> [-2.25, 3.25]
```
If `input` is already real, it is returned unchanged.
Args:
input: A `Tensor`. Must have numeric type.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
with ops.name_scope(name, "Real", [input]) as name:
real_dtype = input.dtype.real_dtype
if input.dtype.base_dtype == real_dtype:
return input
return gen_math_ops.real(input, Tout=real_dtype, name=name)