本文整理匯總了Python中tensorflow.python.ops.gen_math_ops.minimum方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops.minimum方法的具體用法?Python gen_math_ops.minimum怎麽用?Python gen_math_ops.minimum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops.minimum方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: reduce_min
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def reduce_min(input_tensor, reduction_indices=None, keep_dims=False,
name=None):
"""Computes the minimum of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `reduction_indices`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `reduction_indices` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
reduction_indices: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
Returns:
The reduced tensor.
"""
return gen_math_ops._min(input_tensor, _ReductionDims(input_tensor,
reduction_indices),
keep_dims, name=name)
示例2: saturate_cast
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def saturate_cast(value, dtype, name=None):
"""Performs a safe saturating cast of `value` to `dtype`.
This function casts the input to `dtype` without applying any scaling. If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast.
Args:
value: A `Tensor`.
dtype: The desired output `DType`.
name: A name for the operation (optional).
Returns:
`value` safely cast to `dtype`.
"""
# When casting to a type with smaller representable range, clamp.
# Note that this covers casting to unsigned types as well.
with ops.name_scope(name, "saturate_cast", [value]) as name:
value = ops.convert_to_tensor(value, name="value")
dtype = dtypes.as_dtype(dtype).base_dtype
if value.dtype.min < dtype.min:
value = gen_math_ops.maximum(value,
ops.convert_to_tensor(
dtype.min, dtype=value.dtype,
name="min"))
if value.dtype.max > dtype.max:
value = gen_math_ops.minimum(value,
ops.convert_to_tensor(
dtype.max, dtype=value.dtype,
name="max"))
return cast(value, dtype, name=name)
示例3: reduce_min
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def reduce_min(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the minimum of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.min
@end_compatibility
"""
return gen_math_ops._min(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
示例4: saturate_cast
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def saturate_cast(value, dtype, name=None):
"""Performs a safe saturating cast of `value` to `dtype`.
This function casts the input to `dtype` without applying any scaling. If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast.
Args:
value: A `Tensor`.
dtype: The desired output `DType`.
name: A name for the operation (optional).
Returns:
`value` safely cast to `dtype`.
"""
# When casting to a type with smaller representable range, clamp.
# Note that this covers casting to unsigned types as well.
with ops.name_scope(name, "saturate_cast", [value]) as name:
value = ops.convert_to_tensor(value, name="value")
dtype = dtypes.as_dtype(dtype).base_dtype
if value.dtype.min < dtype.min:
value = gen_math_ops.maximum(
value,
ops.convert_to_tensor(
dtype.min, dtype=value.dtype, name="min"))
if value.dtype.max > dtype.max:
value = gen_math_ops.minimum(
value,
ops.convert_to_tensor(
dtype.max, dtype=value.dtype, name="max"))
return cast(value, dtype, name=name)
示例5: saturate_cast
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def saturate_cast(value, dtype, name=None):
"""Performs a safe saturating cast of `value` to `dtype`.
This function casts the input to `dtype` without applying any scaling. If
there is a danger that values would over or underflow in the cast, this op
applies the appropriate clamping before the cast.
Args:
value: A `Tensor`.
dtype: The desired output `DType`.
name: A name for the operation (optional).
Returns:
`value` safely cast to `dtype`.
"""
# When casting to a type with smaller representable range, clamp.
# Note that this covers casting to unsigned types as well.
with ops.name_scope(name, "saturate_cast", [value]) as name:
value = ops.convert_to_tensor(value, name="value")
dtype = dtypes.as_dtype(dtype).base_dtype
if value.dtype.min < dtype.min:
value = gen_math_ops.maximum(value, ops.convert_to_tensor(
dtype.min, dtype=value.dtype, name="min"))
if value.dtype.max > dtype.max:
value = gen_math_ops.minimum(value, ops.convert_to_tensor(
dtype.max, dtype=value.dtype, name="max"))
return cast(value, dtype, name=name)
示例6: __sample_w_rej
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def __sample_w_rej(self, n, seed):
c = math_ops.sqrt((4 * (self.scale ** 2)) + (self.__mf - 1) ** 2)
b_true = (-2 * self.scale + c) / (self.__mf - 1)
# using Taylor approximation with a smooth swift from 10 < scale < 11
# to avoid numerical errors for large scale
b_app = (self.__mf - 1) / (4 * self.scale)
s = gen_math_ops.minimum(gen_math_ops.maximum(0., self.scale - 10), 1.)
b = b_app * s + b_true * (1 - s)
a = (self.__mf - 1 + 2 * self.scale + c) / 4
d = (4 * a * b) / (1 + b) - (self.__mf - 1) * math_ops.log(self.__mf - 1)
self.__b, (self.__e, self.__w) = b, self.__while_loop(b, a, d, n, seed)
return self.__w
示例7: reduce_min
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def reduce_min(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the minimum of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions. Must be in the range
`[-rank(input_tensor), rank(input_tensor))`.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.min
@end_compatibility
"""
return gen_math_ops._min(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:38,代碼來源:math_ops.py
示例8: bincount
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import minimum [as 別名]
def bincount(arr,
weights=None,
minlength=None,
maxlength=None,
dtype=dtypes.int32):
"""Counts the number of occurrences of each value in an integer array.
If `minlength` and `maxlength` are not given, returns a vector with length
`tf.reduce_max(arr) + 1` if `arr` is non-empty, and length 0 otherwise.
If `weights` are non-None, then index `i` of the output stores the sum of the
value in `weights` at each index where the corresponding value in `arr` is
`i`.
Args:
arr: An int32 tensor of non-negative values.
weights: If non-None, must be the same shape as arr. For each value in
`arr`, the bin will be incremented by the corresponding weight instead
of 1.
minlength: If given, ensures the output has length at least `minlength`,
padding with zeros at the end if necessary.
maxlength: If given, skips values in `arr` that are equal or greater than
`maxlength`, ensuring that the output has length at most `maxlength`.
dtype: If `weights` is None, determines the type of the output bins.
Returns:
A vector with the same dtype as `weights` or the given `dtype`. The bin
values.
"""
arr = ops.convert_to_tensor(arr, name="arr", dtype=dtypes.int32)
array_is_nonempty = reduce_prod(array_ops.shape(arr)) > 0
output_size = cast(array_is_nonempty, dtypes.int32) * (reduce_max(arr) + 1)
if minlength is not None:
minlength = ops.convert_to_tensor(
minlength, name="minlength", dtype=dtypes.int32)
output_size = gen_math_ops.maximum(minlength, output_size)
if maxlength is not None:
maxlength = ops.convert_to_tensor(
maxlength, name="maxlength", dtype=dtypes.int32)
output_size = gen_math_ops.minimum(maxlength, output_size)
weights = (ops.convert_to_tensor(weights, name="weights")
if weights is not None else constant_op.constant([], dtype))
return gen_math_ops.bincount(arr, output_size, weights)