當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_math_ops.cumprod方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_math_ops.cumprod方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops.cumprod方法的具體用法?Python gen_math_ops.cumprod怎麽用?Python gen_math_ops.cumprod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_math_ops的用法示例。


在下文中一共展示了gen_math_ops.cumprod方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cumprod

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import cumprod [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:
  ```prettyprint
  tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    exclusive: If `True`, perform exclusive cumprod.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:47,代碼來源:math_ops.py

示例2: cumprod

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import cumprod [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first
  element of the input is identical to the first element of the output:
  ```prettyprint
  tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:
  ```prettyprint
  tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]
  ```
  This is more efficient than using separate `tf.reverse` ops.

  The `reverse` and `exclusive` kwargs can also be combined:
  ```prettyprint
  tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0).
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:46,代碼來源:math_ops.py

示例3: cumprod

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import cumprod [as 別名]
def cumprod(x, axis=0, exclusive=False, reverse=False, name=None):
  """Compute the cumulative product of the tensor `x` along `axis`.

  By default, this op performs an inclusive cumprod, which means that the
  first element of the input is identical to the first element of the output:

  ```python
  tf.cumprod([a, b, c])  # [a, a * b, a * b * c]
  ```

  By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
  performed
  instead:

  ```python
  tf.cumprod([a, b, c], exclusive=True)  # [1, a, a * b]
  ```

  By setting the `reverse` kwarg to `True`, the cumprod is performed in the
  opposite direction:

  ```python
  tf.cumprod([a, b, c], reverse=True)  # [a * b * c, b * c, c]
  ```

  This is more efficient than using separate `tf.reverse` ops.
  The `reverse` and `exclusive` kwargs can also be combined:

  ```python
  tf.cumprod([a, b, c], exclusive=True, reverse=True)  # [b * c, c, 1]
  ```

  Args:
    x: A `Tensor`. Must be one of the following types: `float32`, `float64`,
       `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
       `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    axis: A `Tensor` of type `int32` (default: 0). Must be in the range
      `[-rank(x), rank(x))`.
    exclusive: If `True`, perform exclusive cumprod.
    reverse: A `bool` (default: False).
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `x`.
  """
  with ops.name_scope(name, "Cumprod", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    return gen_math_ops.cumprod(
        x, axis, exclusive=exclusive, reverse=reverse, name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:51,代碼來源:math_ops.py


注:本文中的tensorflow.python.ops.gen_math_ops.cumprod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。