當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_math_ops._sum方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_math_ops._sum方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops._sum方法的具體用法?Python gen_math_ops._sum怎麽用?Python gen_math_ops._sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_math_ops的用法示例。


在下文中一共展示了gen_math_ops._sum方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: reduce_sum

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sum [as 別名]
def reduce_sum(input_tensor, reduction_indices=None, keep_dims=False,
               name=None):
  """Computes the sum of elements across dimensions of a tensor.

  Reduces `input_tensor` along the dimensions given in `reduction_indices`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `reduction_indices` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  For example:

  ```python
  # 'x' is [[1, 1, 1]
  #         [1, 1, 1]]
  tf.reduce_sum(x) ==> 6
  tf.reduce_sum(x, 0) ==> [2, 2, 2]
  tf.reduce_sum(x, 1) ==> [3, 3]
  tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
  tf.reduce_sum(x, [0, 1]) ==> 6
  ```

  Args:
    input_tensor: The tensor to reduce. Should have numeric type.
    reduction_indices: The dimensions to reduce. If `None` (the default),
      reduces all dimensions.
    keep_dims: If true, retains reduced dimensions with length 1.
    name: A name for the operation (optional).

  Returns:
    The reduced tensor.
  """
  return gen_math_ops._sum(input_tensor, _ReductionDims(input_tensor,
                                                        reduction_indices),
                           keep_dims, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:39,代碼來源:math_ops.py

示例2: reduce_sum

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sum [as 別名]
def reduce_sum(input_tensor,
               axis=None,
               keep_dims=False,
               name=None,
               reduction_indices=None):
  """Computes the sum of elements across dimensions of a tensor.

  Reduces `input_tensor` along the dimensions given in `axis`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `axis`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `axis` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  For example:

  ```python
  # 'x' is [[1, 1, 1]
  #         [1, 1, 1]]
  tf.reduce_sum(x) ==> 6
  tf.reduce_sum(x, 0) ==> [2, 2, 2]
  tf.reduce_sum(x, 1) ==> [3, 3]
  tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
  tf.reduce_sum(x, [0, 1]) ==> 6
  ```

  Args:
    input_tensor: The tensor to reduce. Should have numeric type.
    axis: The dimensions to reduce. If `None` (the default),
      reduces all dimensions.
    keep_dims: If true, retains reduced dimensions with length 1.
    name: A name for the operation (optional).
    reduction_indices: The old (deprecated) name for axis.

  Returns:
    The reduced tensor.

  @compatibility(numpy)
  Equivalent to np.sum
  @end_compatibility
  """
  return gen_math_ops._sum(
      input_tensor,
      _ReductionDims(input_tensor, axis, reduction_indices),
      keep_dims,
      name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:49,代碼來源:math_ops.py

示例3: reduce_sum

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sum [as 別名]
def reduce_sum(input_tensor,
               axis=None,
               keep_dims=False,
               name=None,
               reduction_indices=None):
  """Computes the sum of elements across dimensions of a tensor.

  Reduces `input_tensor` along the dimensions given in `axis`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `axis`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `axis` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  For example:

  ```python
  x = tf.constant([[1, 1, 1], [1, 1, 1]])
  tf.reduce_sum(x)  # 6
  tf.reduce_sum(x, 0)  # [2, 2, 2]
  tf.reduce_sum(x, 1)  # [3, 3]
  tf.reduce_sum(x, 1, keep_dims=True)  # [[3], [3]]
  tf.reduce_sum(x, [0, 1])  # 6
  ```

  Args:
    input_tensor: The tensor to reduce. Should have numeric type.
    axis: The dimensions to reduce. If `None` (the default),
      reduces all dimensions. Must be in the range
      `[-rank(input_tensor), rank(input_tensor))`.
    keep_dims: If true, retains reduced dimensions with length 1.
    name: A name for the operation (optional).
    reduction_indices: The old (deprecated) name for axis.

  Returns:
    The reduced tensor.

  @compatibility(numpy)
  Equivalent to np.sum
  @end_compatibility
  """
  return gen_math_ops._sum(
      input_tensor,
      _ReductionDims(input_tensor, axis, reduction_indices),
      keep_dims,
      name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:49,代碼來源:math_ops.py


注:本文中的tensorflow.python.ops.gen_math_ops._sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。