當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_math_ops._sigmoid_grad方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_math_ops._sigmoid_grad方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops._sigmoid_grad方法的具體用法?Python gen_math_ops._sigmoid_grad怎麽用?Python gen_math_ops._sigmoid_grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_math_ops的用法示例。


在下文中一共展示了gen_math_ops._sigmoid_grad方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _SigmoidGrad

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sigmoid_grad [as 別名]
def _SigmoidGrad(op, grad):
  """Returns grad * sigmoid(x) * (1 - sigmoid(x))."""
  y = op.outputs[0]  # y = sigmoid(x)
  with ops.control_dependencies([grad.op]):
    y = math_ops.conj(y)
    # pylint: disable=protected-access
    return gen_math_ops._sigmoid_grad(y, grad) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:math_grad.py

示例2: _SigmoidGradGrad

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sigmoid_grad [as 別名]
def _SigmoidGradGrad(op, grad):
  with ops.control_dependencies([grad.op]):
    a = math_ops.conj(op.inputs[0])
    b = math_ops.conj(op.inputs[1])
    gb = grad * b
    # pylint: disable=protected-access
    return gb - 2.0 * gb * a, gen_math_ops._sigmoid_grad(a, grad) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:math_grad.py

示例3: testGradGrad

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sigmoid_grad [as 別名]
def testGradGrad(self):
    np.random.seed(7)
    shape = (5,)
    dtype_tols = [(np.float32, 5e-4), (np.float64, 1e-6), (np.complex64, 5e-4),
                  (np.complex128, 1e-6)]
    op_range = [(gen_math_ops._inv_grad, [-2, 2]),
                (gen_math_ops._rsqrt_grad, [0.1, 3]),
                (gen_math_ops._sigmoid_grad, [-2, 2]),
                (gen_math_ops._sqrt_grad, [0.1, 3]),
                (gen_math_ops._tanh_grad, [-2, 2]),]

    def rand(dtype):
      x = np.random.uniform(
          real_range[0], real_range[1], size=shape[0]).astype(dtype)
      if dtype in (np.complex64, np.complex128):
        x += 1j * np.random.uniform(-2, 2, size=shape[0]).astype(dtype)
      return x

    for op, real_range in op_range:
      with self.test_session():
        for dtype, tol in dtype_tols:
          x = tf.constant(rand(dtype))
          y = tf.constant(rand(dtype))
          z = op(x, y)
          grads = tf.test.compute_gradient(
              [x, y], [shape, shape],
              z,
              shape,
              x_init_value=[rand(dtype), rand(dtype)])
          if isinstance(grads, tuple):
            grads = [grads]
          for analytical, numerical in grads:
            self.assertAllClose(analytical, numerical, rtol=tol, atol=tol) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:35,代碼來源:cwise_ops_test.py

示例4: _SigmoidGrad

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sigmoid_grad [as 別名]
def _SigmoidGrad(op, grad):
  """Returns grad * sigmoid(x) * (1 - sigmoid(x))."""
  y = op.outputs[0]  # y = sigmoid(x)
  with ops.control_dependencies([grad]):
    y = math_ops.conj(y)
    # pylint: disable=protected-access
    return gen_math_ops._sigmoid_grad(y, grad) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:9,代碼來源:math_grad.py

示例5: _SigmoidGradGrad

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _sigmoid_grad [as 別名]
def _SigmoidGradGrad(op, grad):
  with ops.control_dependencies([grad]):
    a = math_ops.conj(op.inputs[0])
    b = math_ops.conj(op.inputs[1])
    gb = grad * b
    # pylint: disable=protected-access
    return gb - 2.0 * gb * a, gen_math_ops._sigmoid_grad(a, grad) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:9,代碼來源:math_grad.py


注:本文中的tensorflow.python.ops.gen_math_ops._sigmoid_grad方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。