當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_math_ops._complex方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_math_ops._complex方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops._complex方法的具體用法?Python gen_math_ops._complex怎麽用?Python gen_math_ops._complex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_math_ops的用法示例。


在下文中一共展示了gen_math_ops._complex方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: complex

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 別名]
def complex(real, imag, name=None):
  r"""Converts two real numbers to a complex number.

  Given a tensor `real` representing the real part of a complex number, and a
  tensor `imag` representing the imaginary part of a complex number, this
  operation returns complex numbers elementwise of the form \\(a + bj\\), where
  *a* represents the `real` part and *b* represents the `imag` part.

  The input tensors `real` and `imag` must have the same shape.

  For example:

  ```
  # tensor 'real' is [2.25, 3.25]
  # tensor `imag` is [4.75, 5.75]
  tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
  ```

  Args:
    real: A `Tensor`. Must be one of the following types: `float32`,
      `float64`.
    imag: A `Tensor`. Must have the same type as `real`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `complex64` or `complex128`.
  """
  real = ops.convert_to_tensor(real, name="real")
  imag = ops.convert_to_tensor(imag, name="imag")
  with ops.name_scope(name, "Complex", [real, imag]) as name:
    input_types = (real.dtype, imag.dtype)
    if input_types == (dtypes.float64, dtypes.float64):
      Tout = dtypes.complex128
    elif input_types == (dtypes.float32, dtypes.float32):
      Tout = dtypes.complex64
    else:
      raise TypeError("real and imag have incorrect types: "
                      "{} {}".format(real.dtype.name, imag.dtype.name))
    return gen_math_ops._complex(real, imag, Tout=Tout, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:math_ops.py

示例2: complex

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 別名]
def complex(real, imag, name=None):
  r"""Converts two real numbers to a complex number.

  Given a tensor `real` representing the real part of a complex number, and a
  tensor `imag` representing the imaginary part of a complex number, this
  operation returns complex numbers elementwise of the form \\(a + bj\\), where
  *a* represents the `real` part and *b* represents the `imag` part.

  The input tensors `real` and `imag` must have the same shape.

  For example:

  ```
  # tensor 'real' is [2.25, 3.25]
  # tensor `imag` is [4.75, 5.75]
  tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
  ```

  Args:
    real: A `Tensor`. Must be one of the following types: `float32`,
      `float64`.
    imag: A `Tensor`. Must have the same type as `real`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `complex64` or `complex128`.
  """
  real = ops.convert_to_tensor(real, name="real")
  imag = ops.convert_to_tensor(imag, name="imag")
  with ops.name_scope(name, "Complex", [real, imag]) as name:
    input_types = (real.dtype, imag.dtype)
    if input_types == (dtypes.float64, dtypes.float64):
      Tout = dtypes.complex128
    elif input_types == (dtypes.float32, dtypes.float32):
      Tout = dtypes.complex64
    else:
      raise TypeError("real and imag have incorrect types: "
                      "{} {}".format(real.dtype.name,
                                     imag.dtype.name))
    return gen_math_ops._complex(real, imag, Tout=Tout, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:42,代碼來源:math_ops.py

示例3: complex

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 別名]
def complex(real, imag, name=None):
  """Converts two real numbers to a complex number.

  Given a tensor `real` representing the real part of a complex number, and a
  tensor `imag` representing the imaginary part of a complex number, this
  operation returns complex numbers elementwise of the form \\(a + bj\\), where
  *a* represents the `real` part and *b* represents the `imag` part.

  The input tensors `real` and `imag` must have the same shape.

  For example:

  ```
  # tensor 'real' is [2.25, 3.25]
  # tensor `imag` is [4.75, 5.75]
  tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
  ```

  Args:
    real: A `Tensor`. Must be one of the following types: `float32`, `float64`.
    imag: A `Tensor`. Must have the same type as `real`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `complex64` or `complex128`.
  """
  real = ops.convert_to_tensor(real, name="real")
  imag = ops.convert_to_tensor(imag, name="imag")
  with ops.name_scope(name, "Complex", [real, imag]) as name:
    input_types = (real.dtype, imag.dtype)
    if input_types == (dtypes.float64, dtypes.float64):
      Tout = dtypes.complex128
    elif input_types == (dtypes.float32, dtypes.float32):
      Tout = dtypes.complex64
    else:
      raise TypeError("real and imag have incorrect types: "
                      "{} {}".format(real.dtype.name, imag.dtype.name))
    return gen_math_ops._complex(real, imag, Tout=Tout, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:40,代碼來源:math_ops.py

示例4: complex

# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 別名]
def complex(real, imag, name=None):
  r"""Converts two real numbers to a complex number.

  Given a tensor `real` representing the real part of a complex number, and a
  tensor `imag` representing the imaginary part of a complex number, this
  operation returns complex numbers elementwise of the form \\(a + bj\\), where
  *a* represents the `real` part and *b* represents the `imag` part.

  The input tensors `real` and `imag` must have the same shape.

  For example:

  ```python
  real = tf.constant([2.25, 3.25])
  imag = tf.constant([4.75, 5.75])
  tf.complex(real, imag)  # [[2.25 + 4.75j], [3.25 + 5.75j]]
  ```

  Args:
    real: A `Tensor`. Must be one of the following types: `float32`,
      `float64`.
    imag: A `Tensor`. Must have the same type as `real`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `complex64` or `complex128`.
  """
  real = ops.convert_to_tensor(real, name="real")
  imag = ops.convert_to_tensor(imag, name="imag")
  with ops.name_scope(name, "Complex", [real, imag]) as name:
    input_types = (real.dtype, imag.dtype)
    if input_types == (dtypes.float64, dtypes.float64):
      Tout = dtypes.complex128
    elif input_types == (dtypes.float32, dtypes.float32):
      Tout = dtypes.complex64
    else:
      raise TypeError("real and imag have incorrect types: "
                      "{} {}".format(real.dtype.name, imag.dtype.name))
    return gen_math_ops._complex(real, imag, Tout=Tout, name=name) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:41,代碼來源:math_ops.py


注:本文中的tensorflow.python.ops.gen_math_ops._complex方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。