當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_array_ops.shape方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_array_ops.shape方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_array_ops.shape方法的具體用法?Python gen_array_ops.shape怎麽用?Python gen_array_ops.shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_array_ops的用法示例。


在下文中一共展示了gen_array_ops.shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: shape

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape(input, name=None, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  This operation returns a 1-D integer tensor representing the shape of `input`.

  For example:

  ```python
  # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
  shape(t) ==> [2, 2, 3]
  ```

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to `tf.int32`.

  Returns:
    A `Tensor` of type `out_type`.
  """
  return shape_internal(input, name, optimize=True, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:array_ops.py

示例2: shape_internal

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the shape as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.

  """
  with ops.name_scope(name, "Shape", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops.cast(input.dense_shape, out_type)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.as_list(), out_type, name=name)
      return gen_array_ops.shape(input, name=name, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:array_ops.py

示例3: shape_internal

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the shape as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.

  """
  with ops.name_scope(name, "Shape", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops.cast(input.shape, out_type)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.as_list(), out_type, name=name)
      return gen_array_ops.shape(input, name=name, out_type=out_type) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:array_ops.py

示例4: size_internal

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin,protected-access
  """Returns the size of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the size as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.
  """
  with ops.name_scope(name, "Size", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops._prod(
          gen_math_ops.cast(input.shape, out_type), 0, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.num_elements(), out_type, name=name)
      return gen_array_ops.size(input, name=name, out_type=out_type) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:array_ops.py

示例5: rank_internal

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def rank_internal(input, name=None, optimize=True):
  # pylint: disable=redefined-builtin
  """Returns the rank of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the rank as a constant when possible.

  Returns:
    A `Tensor` of type `int32`.
  """
  with ops.name_scope(name, "Rank", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_array_ops.size(input.shape, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.ndims is not None:
        return constant(input_shape.ndims, dtypes.int32, name=name)
      return gen_array_ops.rank(input, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:array_ops.py

示例6: _FillShape

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def _FillShape(op):
  """Shape function for the Fill op.

  This op takes a vector of dimensions and a scalar, and produces a
  tensor with the given dimensions.

  Args:
    op: A Fill Operation.

  Returns:
    A single-element list containing the shape of the output.

  Raises:
    ValueError: If the shapes or arguments are known to be invalid.
  """
  op.inputs[0].get_shape().assert_has_rank(1)
  op.inputs[1].get_shape().assert_has_rank(0)
  fill_dims = tensor_util.constant_value(op.inputs[0])
  if fill_dims is not None and any(d < 0 for d in fill_dims):
    raise ValueError("Fill dimensions must be >= 0")
  return [tensor_util.constant_value_as_shape(op.inputs[0])] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:array_ops.py

示例7: _PlaceholderWithDefaultShape

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def _PlaceholderWithDefaultShape(op):
  """Shape function for the PlaceholderWithDefault op.

  This op acts as an identity when it is not fed (passing through a
  default value), but allows the user to feed it with tensors of a
  possibly less precise shape than its default value.

  Args:
    op: A PlaceholderWithDefault `Operation`.

  Returns:
    A single-element list containing the shape of the output.
  """
  input_shape = op.inputs[0].get_shape()
  output_shape = tensor_shape.TensorShape(op.get_attr("shape"))
  # NOTE(mrry): We don't merge these shapes, because `output_shape`
  # may be *less* precise than `input_shape`.
  input_shape.assert_is_compatible_with(output_shape)
  return [output_shape] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:array_ops.py

示例8: identity

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def identity(input, name=None):  # pylint: disable=redefined-builtin
  r"""Return a tensor with the same shape and contents as input.

  Args:
    input: A `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `input`.
  """
  if context.in_graph_mode():
    return gen_array_ops.identity(input, name=name)
  else:
    if context.context().device_name != input.device:
      return input._copy()  # pylint: disable=protected-access
    return input


# pylint: disable=redefined-builtin,protected-access 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:21,代碼來源:array_ops.py

示例9: shape

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape(input, name=None, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  This operation returns a 1-D integer tensor representing the shape of `input`.

  For example:

  ```python
  t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
  tf.shape(t)  # [2, 2, 3]
  ```

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to `tf.int32`.

  Returns:
    A `Tensor` of type `out_type`.
  """
  return shape_internal(input, name, optimize=True, out_type=out_type) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:25,代碼來源:array_ops.py

示例10: broadcast_dynamic_shape

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def broadcast_dynamic_shape(shape_x, shape_y):
  # pylint: disable=protected-access
  """Returns the broadcasted dynamic shape between `shape_x` and `shape_y`.

  Args:
    shape_x: A rank 1 integer `Tensor`, representing the shape of x.
    shape_y: A rank 1 integer `Tensor`, representing the shape of y.
  Returns:
    A rank 1 integer `Tensor` representing the broadcasted shape.
  """
  return gen_array_ops._broadcast_args(shape_x, shape_y)
  # pylint: enable=protected-access 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:array_ops.py

示例11: broadcast_static_shape

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def broadcast_static_shape(shape_x, shape_y):
  """Returns the broadcasted static shape between `shape_x` and `shape_y`.

  Args:
    shape_x: A `TensorShape`
    shape_y: A `TensorShape`

  Returns:
    A `TensorShape` representing the broadcasted shape.

  Raises:
    ValueError: If the two shapes can not be broadcasted.
  """
  return common_shapes.broadcast_shape(shape_x, shape_y) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:array_ops.py

示例12: sparse_mask

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def sparse_mask(a, mask_indices, name=None):
  """Masks elements of `IndexedSlices`.

  Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
  contains a subset of the slices of `a`. Only the slices at indices not
  specified in `mask_indices` are returned.

  This is useful when you need to extract a subset of slices in an
  `IndexedSlices` object.

  For example:

  ```python
  # `a` contains slices at indices [12, 26, 37, 45] from a large tensor
  # with shape [1000, 10]
  a.indices => [12, 26, 37, 45]
  tf.shape(a.values) => [4, 10]

  # `b` will be the subset of `a` slices at its second and third indices, so
  # we want to mask its first and last indices (which are at absolute
  # indices 12, 45)
  b = tf.sparse_mask(a, [12, 45])

  b.indices => [26, 37]
  tf.shape(b.values) => [2, 10]

  ```

  Args:
    a: An `IndexedSlices` instance.
    mask_indices: Indices of elements to mask.
    name: A name for the operation (optional).

  Returns:
    The masked `IndexedSlices` instance.
  """
  with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
    indices = a.indices
    out_indices, to_gather = setdiff1d(indices, mask_indices)
    out_values = gather(a.values, to_gather, name=name)
    return ops.IndexedSlices(out_values, out_indices, a.dense_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:array_ops.py

示例13: zeros

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def zeros(shape, dtype=dtypes.float32, name=None):
  """Creates a tensor with all elements set to zero.

  This operation returns a tensor of type `dtype` with shape `shape` and
  all elements set to zero.

  For example:

  ```python
  tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
  ```

  Args:
    shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
    dtype: The type of an element in the resulting `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with all elements set to zero.
  """
  dtype = dtypes.as_dtype(dtype).base_dtype
  with ops.name_scope(name, "zeros", [shape]) as name:
    if dtype == dtypes.bool:
      zero = False
    elif dtype == dtypes.string:
      zero = ""
    else:
      zero = 0
    try:
      shape = tensor_shape.as_shape(shape)
      output = constant(zero, shape=shape, dtype=dtype, name=name)
    except (TypeError, ValueError):
      shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
      output = fill(shape, constant(zero, dtype=dtype), name=name)
  assert output.dtype.base_dtype == dtype
  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:array_ops.py

示例14: zeros_like

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def zeros_like(tensor, dtype=None, name=None, optimize=True):
  """Creates a tensor with all elements set to zero.

  Given a single tensor (`tensor`), this operation returns a tensor of the
  same type and shape as `tensor` with all elements set to zero. Optionally,
  you can use `dtype` to specify a new type for the returned tensor.

  For example:

  ```python
  # 'tensor' is [[1, 2, 3], [4, 5, 6]]
  tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]
  ```

  Args:
    tensor: A `Tensor`.
    dtype: A type for the returned `Tensor`. Must be `float32`, `float64`,
    `int8`, `int16`, `int32`, `int64`, `uint8`, `complex64`, or `complex128`.
    name: A name for the operation (optional).
    optimize: if true, attempt to statically determine the shape of 'tensor'
    and encode it as a constant.

  Returns:
    A `Tensor` with all elements set to zero.
  """
  with ops.name_scope(name, "zeros_like", [tensor]) as name:
    tensor = ops.convert_to_tensor(tensor, name="tensor")

    if tensor.shape.is_fully_defined():
      # We can produce a zeros tensor independent of the value of 'tensor',
      # since the shape is known statically.
      return zeros(tensor.shape, dtype=dtype or tensor.dtype, name=name)

    if dtype is not None and dtype != tensor.dtype:
      return zeros(shape_internal(tensor, optimize=optimize), dtype=dtype,
                   name=name)
    else:
      return gen_array_ops._zeros_like(tensor, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:array_ops.py

示例15: ones_like

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def ones_like(tensor, dtype=None, name=None, optimize=True):
  """Creates a tensor with all elements set to 1.

  Given a single tensor (`tensor`), this operation returns a tensor of the same
  type and shape as `tensor` with all elements set to 1. Optionally, you can
  specify a new type (`dtype`) for the returned tensor.

  For example:

  ```python
  # 'tensor' is [[1, 2, 3], [4, 5, 6]]
  tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]
  ```

  Args:
    tensor: A `Tensor`.
    dtype: A type for the returned `Tensor`. Must be `float32`, `float64`,
      `int8`, `int16`, `int32`, `int64`, `uint8`, `complex64`, `complex128` or
      `bool`.
    name: A name for the operation (optional).
    optimize: if true, attempt to statically determine the shape of 'tensor'
    and encode it as a constant.

  Returns:
    A `Tensor` with all elements set to 1.
  """
  with ops.name_scope(name, "ones_like", [tensor]) as name:
    tensor = ops.convert_to_tensor(tensor, name="tensor")
    ones_shape = shape_internal(tensor, optimize=optimize)
    if dtype is None:
      dtype = tensor.dtype
    ret = ones(ones_shape, dtype=dtype, name=name)
    ret.set_shape(tensor.get_shape())
    return ret 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:array_ops.py


注:本文中的tensorflow.python.ops.gen_array_ops.shape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。