本文整理匯總了Python中tensorflow.python.ops.gen_array_ops.shape方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_array_ops.shape方法的具體用法?Python gen_array_ops.shape怎麽用?Python gen_array_ops.shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.gen_array_ops
的用法示例。
在下文中一共展示了gen_array_ops.shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: shape
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape(input, name=None, out_type=dtypes.int32):
# pylint: disable=redefined-builtin
"""Returns the shape of a tensor.
This operation returns a 1-D integer tensor representing the shape of `input`.
For example:
```python
# 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape(t) ==> [2, 2, 3]
```
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to `tf.int32`.
Returns:
A `Tensor` of type `out_type`.
"""
return shape_internal(input, name, optimize=True, out_type=out_type)
示例2: shape_internal
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin
"""Returns the shape of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the shape as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Shape", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops.cast(input.dense_shape, out_type)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.as_list(), out_type, name=name)
return gen_array_ops.shape(input, name=name, out_type=out_type)
示例3: shape_internal
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin
"""Returns the shape of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the shape as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Shape", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops.cast(input.shape, out_type)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.as_list(), out_type, name=name)
return gen_array_ops.shape(input, name=name, out_type=out_type)
示例4: size_internal
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
示例5: rank_internal
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def rank_internal(input, name=None, optimize=True):
# pylint: disable=redefined-builtin
"""Returns the rank of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the rank as a constant when possible.
Returns:
A `Tensor` of type `int32`.
"""
with ops.name_scope(name, "Rank", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_array_ops.size(input.shape, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.ndims is not None:
return constant(input_shape.ndims, dtypes.int32, name=name)
return gen_array_ops.rank(input, name=name)
示例6: _FillShape
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def _FillShape(op):
"""Shape function for the Fill op.
This op takes a vector of dimensions and a scalar, and produces a
tensor with the given dimensions.
Args:
op: A Fill Operation.
Returns:
A single-element list containing the shape of the output.
Raises:
ValueError: If the shapes or arguments are known to be invalid.
"""
op.inputs[0].get_shape().assert_has_rank(1)
op.inputs[1].get_shape().assert_has_rank(0)
fill_dims = tensor_util.constant_value(op.inputs[0])
if fill_dims is not None and any(d < 0 for d in fill_dims):
raise ValueError("Fill dimensions must be >= 0")
return [tensor_util.constant_value_as_shape(op.inputs[0])]
示例7: _PlaceholderWithDefaultShape
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def _PlaceholderWithDefaultShape(op):
"""Shape function for the PlaceholderWithDefault op.
This op acts as an identity when it is not fed (passing through a
default value), but allows the user to feed it with tensors of a
possibly less precise shape than its default value.
Args:
op: A PlaceholderWithDefault `Operation`.
Returns:
A single-element list containing the shape of the output.
"""
input_shape = op.inputs[0].get_shape()
output_shape = tensor_shape.TensorShape(op.get_attr("shape"))
# NOTE(mrry): We don't merge these shapes, because `output_shape`
# may be *less* precise than `input_shape`.
input_shape.assert_is_compatible_with(output_shape)
return [output_shape]
示例8: identity
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def identity(input, name=None): # pylint: disable=redefined-builtin
r"""Return a tensor with the same shape and contents as input.
Args:
input: A `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `input`.
"""
if context.in_graph_mode():
return gen_array_ops.identity(input, name=name)
else:
if context.context().device_name != input.device:
return input._copy() # pylint: disable=protected-access
return input
# pylint: disable=redefined-builtin,protected-access
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:21,代碼來源:array_ops.py
示例9: shape
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def shape(input, name=None, out_type=dtypes.int32):
# pylint: disable=redefined-builtin
"""Returns the shape of a tensor.
This operation returns a 1-D integer tensor representing the shape of `input`.
For example:
```python
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
tf.shape(t) # [2, 2, 3]
```
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to `tf.int32`.
Returns:
A `Tensor` of type `out_type`.
"""
return shape_internal(input, name, optimize=True, out_type=out_type)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:25,代碼來源:array_ops.py
示例10: broadcast_dynamic_shape
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def broadcast_dynamic_shape(shape_x, shape_y):
# pylint: disable=protected-access
"""Returns the broadcasted dynamic shape between `shape_x` and `shape_y`.
Args:
shape_x: A rank 1 integer `Tensor`, representing the shape of x.
shape_y: A rank 1 integer `Tensor`, representing the shape of y.
Returns:
A rank 1 integer `Tensor` representing the broadcasted shape.
"""
return gen_array_ops._broadcast_args(shape_x, shape_y)
# pylint: enable=protected-access
示例11: broadcast_static_shape
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def broadcast_static_shape(shape_x, shape_y):
"""Returns the broadcasted static shape between `shape_x` and `shape_y`.
Args:
shape_x: A `TensorShape`
shape_y: A `TensorShape`
Returns:
A `TensorShape` representing the broadcasted shape.
Raises:
ValueError: If the two shapes can not be broadcasted.
"""
return common_shapes.broadcast_shape(shape_x, shape_y)
示例12: sparse_mask
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def sparse_mask(a, mask_indices, name=None):
"""Masks elements of `IndexedSlices`.
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
contains a subset of the slices of `a`. Only the slices at indices not
specified in `mask_indices` are returned.
This is useful when you need to extract a subset of slices in an
`IndexedSlices` object.
For example:
```python
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]
# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])
b.indices => [26, 37]
tf.shape(b.values) => [2, 10]
```
Args:
a: An `IndexedSlices` instance.
mask_indices: Indices of elements to mask.
name: A name for the operation (optional).
Returns:
The masked `IndexedSlices` instance.
"""
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
indices = a.indices
out_indices, to_gather = setdiff1d(indices, mask_indices)
out_values = gather(a.values, to_gather, name=name)
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
示例13: zeros
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def zeros(shape, dtype=dtypes.float32, name=None):
"""Creates a tensor with all elements set to zero.
This operation returns a tensor of type `dtype` with shape `shape` and
all elements set to zero.
For example:
```python
tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
```
Args:
shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
dtype: The type of an element in the resulting `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` with all elements set to zero.
"""
dtype = dtypes.as_dtype(dtype).base_dtype
with ops.name_scope(name, "zeros", [shape]) as name:
if dtype == dtypes.bool:
zero = False
elif dtype == dtypes.string:
zero = ""
else:
zero = 0
try:
shape = tensor_shape.as_shape(shape)
output = constant(zero, shape=shape, dtype=dtype, name=name)
except (TypeError, ValueError):
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
output = fill(shape, constant(zero, dtype=dtype), name=name)
assert output.dtype.base_dtype == dtype
return output
示例14: zeros_like
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def zeros_like(tensor, dtype=None, name=None, optimize=True):
"""Creates a tensor with all elements set to zero.
Given a single tensor (`tensor`), this operation returns a tensor of the
same type and shape as `tensor` with all elements set to zero. Optionally,
you can use `dtype` to specify a new type for the returned tensor.
For example:
```python
# 'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]
```
Args:
tensor: A `Tensor`.
dtype: A type for the returned `Tensor`. Must be `float32`, `float64`,
`int8`, `int16`, `int32`, `int64`, `uint8`, `complex64`, or `complex128`.
name: A name for the operation (optional).
optimize: if true, attempt to statically determine the shape of 'tensor'
and encode it as a constant.
Returns:
A `Tensor` with all elements set to zero.
"""
with ops.name_scope(name, "zeros_like", [tensor]) as name:
tensor = ops.convert_to_tensor(tensor, name="tensor")
if tensor.shape.is_fully_defined():
# We can produce a zeros tensor independent of the value of 'tensor',
# since the shape is known statically.
return zeros(tensor.shape, dtype=dtype or tensor.dtype, name=name)
if dtype is not None and dtype != tensor.dtype:
return zeros(shape_internal(tensor, optimize=optimize), dtype=dtype,
name=name)
else:
return gen_array_ops._zeros_like(tensor, name=name)
示例15: ones_like
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import shape [as 別名]
def ones_like(tensor, dtype=None, name=None, optimize=True):
"""Creates a tensor with all elements set to 1.
Given a single tensor (`tensor`), this operation returns a tensor of the same
type and shape as `tensor` with all elements set to 1. Optionally, you can
specify a new type (`dtype`) for the returned tensor.
For example:
```python
# 'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]
```
Args:
tensor: A `Tensor`.
dtype: A type for the returned `Tensor`. Must be `float32`, `float64`,
`int8`, `int16`, `int32`, `int64`, `uint8`, `complex64`, `complex128` or
`bool`.
name: A name for the operation (optional).
optimize: if true, attempt to statically determine the shape of 'tensor'
and encode it as a constant.
Returns:
A `Tensor` with all elements set to 1.
"""
with ops.name_scope(name, "ones_like", [tensor]) as name:
tensor = ops.convert_to_tensor(tensor, name="tensor")
ones_shape = shape_internal(tensor, optimize=optimize)
if dtype is None:
dtype = tensor.dtype
ret = ones(ones_shape, dtype=dtype, name=name)
ret.set_shape(tensor.get_shape())
return ret