本文整理匯總了Python中tensorflow.python.ops.gen_array_ops.fill方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_array_ops.fill方法的具體用法?Python gen_array_ops.fill怎麽用?Python gen_array_ops.fill使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.gen_array_ops
的用法示例。
在下文中一共展示了gen_array_ops.fill方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scheduled_sampling
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 別名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
with variable_scope.variable_scope("ScheduledEmbedding"):
# Return -1s where we do not sample, and sample_ids elsewhere
select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
select_sample = select_sampler.sample(sample_shape=batch_size)
sample_ids = array_ops.where(
select_sample,
tf.range(batch_size),
gen_array_ops.fill([batch_size], -1))
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), tf.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), tf.int32)
_estimate = array_ops.gather_nd(estimate, where_sampling)
_true = array_ops.gather_nd(true, where_not_sampling)
base_shape = array_ops.shape(true)
result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
result = result1 + result2
return result1 + result2
示例2: sample
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 別名]
def sample(self, time, outputs, state, name=None):
"""Gets a sample for one step."""
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
[time, outputs, state]):
# Return -1s where we did not sample, and sample_ids elsewhere
select_sampler = bernoulli.Bernoulli(
probs=self._sampling_probability, dtype=dtypes.bool)
select_sample = select_sampler.sample(
sample_shape=self.batch_size, seed=self._scheduling_seed)
sample_id_sampler = categorical.Categorical(logits=outputs)
return array_ops.where(
select_sample,
sample_id_sampler.sample(seed=self._seed),
gen_array_ops.fill([self.batch_size], -1))
示例3: sample
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 別名]
def sample(self, time, outputs, state, name=None):
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
[time, outputs, state]):
# Return -1s where we did not sample, and sample_ids elsewhere
select_sampler = bernoulli.Bernoulli(
probs=self._sampling_probability, dtype=dtypes.bool)
select_sample = select_sampler.sample(
sample_shape=self.batch_size, seed=self._scheduling_seed)
sample_id_sampler = categorical.Categorical(logits=outputs)
return array_ops.where(
select_sample,
sample_id_sampler.sample(seed=self._seed),
gen_array_ops.fill([self.batch_size], -1))
示例4: sample
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 別名]
def sample(self, time, outputs, state, name=None):
"""Gets a sample for one step."""
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
[time, outputs, state]):
# Return -1s where we did not sample, and sample_ids elsewhere
select_sampler = tfpd.Bernoulli(
probs=self._sampling_probability, dtype=dtypes.bool)
select_sample = select_sampler.sample(
sample_shape=self.batch_size, seed=self._scheduling_seed)
sample_id_sampler = tfpd.Categorical(logits=outputs)
return array_ops.where(
select_sample,
sample_id_sampler.sample(seed=self._seed),
gen_array_ops.fill([self.batch_size], -1))
示例5: _create_slots
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 別名]
def _create_slots(self, var_list):
for v in var_list:
with ops.colocate_with(v):
dtype = v.dtype.base_dtype
if v.get_shape().is_fully_defined():
init = init_ops.constant_initializer(self._initial_accumulator_value,
dtype=dtype)
else:
# Use a Tensor instead of initializer if variable does not have static
# shape.
init_constant = gen_array_ops.fill(array_ops.shape(v),
self._initial_accumulator_value)
init = math_ops.cast(init_constant, dtype)
self._get_or_make_slot_with_initializer(v, init, v.get_shape(), dtype,
"accumulator", self._name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:17,代碼來源:adagrad.py