當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_array_ops._split方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_array_ops._split方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_array_ops._split方法的具體用法?Python gen_array_ops._split怎麽用?Python gen_array_ops._split使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_array_ops的用法示例。


在下文中一共展示了gen_array_ops._split方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: split

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import _split [as 別名]
def split(split_dim, num_split, value, name="split"):
  """Splits a tensor into `num_split` tensors along one dimension.

  Splits `value` along dimension `split_dim` into `num_split` smaller tensors.
  Requires that `num_split` evenly divide `value.shape[split_dim]`.

  For example:

  ```python
  # 'value' is a tensor with shape [5, 30]
  # Split 'value' into 3 tensors along dimension 1
  split0, split1, split2 = tf.split(1, 3, value)
  tf.shape(split0) ==> [5, 10]
  ```

  Note: If you are splitting along an axis by the length of that axis, consider
  using unpack, e.g.

  ```python
  num_items = t.get_shape()[axis].value
  [tf.squeeze(s, [axis]) for s in tf.split(axis, num_items, t)]
  ```

  can be rewritten as

  ```python
  tf.unpack(t, axis=axis)
  ```

  Args:
    split_dim: A 0-D `int32` `Tensor`. The dimension along which to split.
      Must be in the range `[0, rank(value))`.
    num_split: A Python integer. The number of ways to split.
    value: The `Tensor` to split.
    name: A name for the operation (optional).

  Returns:
    `num_split` `Tensor` objects resulting from splitting `value`.
  """
  return gen_array_ops._split(split_dim=split_dim,
                              num_split=num_split,
                              value=value,
                              name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:45,代碼來源:array_ops.py


注:本文中的tensorflow.python.ops.gen_array_ops._split方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。