本文整理匯總了Python中tensorflow.python.ops.gen_array_ops._slice方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_array_ops._slice方法的具體用法?Python gen_array_ops._slice怎麽用?Python gen_array_ops._slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.gen_array_ops
的用法示例。
在下文中一共展示了gen_array_ops._slice方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: slice
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import _slice [as 別名]
def slice(input_, begin, size, name=None):
# pylint: disable=redefined-builtin
"""Extracts a slice from a tensor.
This operation extracts a slice of size `size` from a tensor `input` starting
at the location specified by `begin`. The slice `size` is represented as a
tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
of `input` that you want to slice. The starting location (`begin`) for the
slice is represented as an offset in each dimension of `input`. In other
words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
want to slice from.
`begin` is zero-based; `size` is one-based. If `size[i]` is -1,
all remaining elements in dimension i are included in the
slice. In other words, this is equivalent to setting:
`size[i] = input.dim_size(i) - begin[i]`
This operation requires that:
`0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]`
For example:
```python
# 'input' is [[[1, 1, 1], [2, 2, 2]],
# [[3, 3, 3], [4, 4, 4]],
# [[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
[4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
[[5, 5, 5]]]
```
Args:
input_: A `Tensor`.
begin: An `int32` or `int64` `Tensor`.
size: An `int32` or `int64` `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` the same type as `input`.
"""
return gen_array_ops._slice(input_, begin, size, name=name)
# pylint: disable=invalid-name
示例2: slice
# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import _slice [as 別名]
def slice(input_, begin, size, name=None):
# pylint: disable=redefined-builtin
"""Extracts a slice from a tensor.
This operation extracts a slice of size `size` from a tensor `input` starting
at the location specified by `begin`. The slice `size` is represented as a
tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
of `input` that you want to slice. The starting location (`begin`) for the
slice is represented as an offset in each dimension of `input`. In other
words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
want to slice from.
Note that @{tf.Tensor.__getitem__} is typically a more pythonic way to
perform slices, as it allows you to write `foo[3:7, :-2]` instead of
`tf.slice([3, 0], [4, foo.get_shape()[1]-2])`.
`begin` is zero-based; `size` is one-based. If `size[i]` is -1,
all remaining elements in dimension i are included in the
slice. In other words, this is equivalent to setting:
`size[i] = input.dim_size(i) - begin[i]`
This operation requires that:
`0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]`
For example:
```python
t = tf.constant([[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]])
tf.slice(t, [1, 0, 0], [1, 1, 3]) # [[[3, 3, 3]]]
tf.slice(t, [1, 0, 0], [1, 2, 3]) # [[[3, 3, 3],
# [4, 4, 4]]]
tf.slice(t, [1, 0, 0], [2, 1, 3]) # [[[3, 3, 3]],
# [[5, 5, 5]]]
```
Args:
input_: A `Tensor`.
begin: An `int32` or `int64` `Tensor`.
size: An `int32` or `int64` `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` the same type as `input`.
"""
return gen_array_ops._slice(input_, begin, size, name=name)
# pylint: disable=invalid-name
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:54,代碼來源:array_ops.py