當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_array_ops._placeholder方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.gen_array_ops._placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_array_ops._placeholder方法的具體用法?Python gen_array_ops._placeholder怎麽用?Python gen_array_ops._placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.gen_array_ops的用法示例。


在下文中一共展示了gen_array_ops._placeholder方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: placeholder

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import _placeholder [as 別名]
def placeholder(dtype, shape=None, name=None):
  """Inserts a placeholder for a tensor that will be always fed.

  **Important**: This tensor will produce an error if evaluated. Its value must
  be fed using the `feed_dict` optional argument to `Session.run()`,
  `Tensor.eval()`, or `Operation.run()`.

  For example:

  ```python
  x = tf.placeholder(tf.float32, shape=(1024, 1024))
  y = tf.matmul(x, x)

  with tf.Session() as sess:
    print(sess.run(y))  # ERROR: will fail because x was not fed.

    rand_array = np.random.rand(1024, 1024)
    print(sess.run(y, feed_dict={x: rand_array}))  # Will succeed.
  ```

  Args:
    dtype: The type of elements in the tensor to be fed.
    shape: The shape of the tensor to be fed (optional). If the shape is not
      specified, you can feed a tensor of any shape.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` that may be used as a handle for feeding a value, but not
    evaluated directly.
  """
  return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)


# pylint: disable=redefined-outer-name 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:array_ops.py

示例2: placeholder

# 需要導入模塊: from tensorflow.python.ops import gen_array_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_array_ops import _placeholder [as 別名]
def placeholder(dtype, shape=None, name=None):
  """Inserts a placeholder for a tensor that will be always fed.

  **Important**: This tensor will produce an error if evaluated. Its value must
  be fed using the `feed_dict` optional argument to `Session.run()`,
  `Tensor.eval()`, or `Operation.run()`.

  For example:

  ```python
  x = tf.placeholder(tf.float32, shape=(1024, 1024))
  y = tf.matmul(x, x)

  with tf.Session() as sess:
    print(sess.run(y))  # ERROR: will fail because x was not fed.

    rand_array = np.random.rand(1024, 1024)
    print(sess.run(y, feed_dict={x: rand_array}))  # Will succeed.
  ```

  Args:
    dtype: The type of elements in the tensor to be fed.
    shape: The shape of the tensor to be fed (optional). If the shape is not
      specified, you can feed a tensor of any shape.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` that may be used as a handle for feeding a value, but not
    evaluated directly.
  """
  shape = tensor_shape.as_shape(shape)
  if shape.is_fully_defined():
    dim_list = shape.as_list()
  else:
    dim_list = []
  ret = gen_array_ops._placeholder(
      dtype=dtype,
      shape=dim_list,
      name=name)
  ret.set_shape(shape)
  return ret


# pylint: disable=redefined-outer-name 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:46,代碼來源:array_ops.py


注:本文中的tensorflow.python.ops.gen_array_ops._placeholder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。