本文整理匯總了Python中tensorflow.python.ops.embedding_ops.embedding_lookup方法的典型用法代碼示例。如果您正苦於以下問題:Python embedding_ops.embedding_lookup方法的具體用法?Python embedding_ops.embedding_lookup怎麽用?Python embedding_ops.embedding_lookup使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.embedding_ops
的用法示例。
在下文中一共展示了embedding_ops.embedding_lookup方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_embedding_layer
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def add_embedding_layer(self, emb_matrix):
"""
Adds word embedding layer to the graph.
Inputs:
emb_matrix: shape (400002, embedding_size).
The GloVe vectors, plus vectors for PAD and UNK.
"""
with vs.variable_scope("embeddings"):
# Note: the embedding matrix is a tf.constant which means it's not a trainable parameter
embedding_matrix = tf.constant(emb_matrix, dtype=tf.float32, name="emb_matrix") # shape (400002, embedding_size)
# Get the word embeddings for the context and question,
# using the placeholders self.context_ids and self.qn_ids
self.context_embs = embedding_ops.embedding_lookup(embedding_matrix, self.context_ids) # shape (batch_size, context_len, embedding_size)
self.qn_embs = embedding_ops.embedding_lookup(embedding_matrix, self.qn_ids) # shape (batch_size, question_len, embedding_size)
示例2: call
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def call(self, inputs, state):
"""Run the cell on embedded inputs."""
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if isinstance(state, tuple):
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(embedding,
array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
示例3: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def _init_clusters_random(self):
"""Does random initialization of clusters.
Returns:
Tensor of randomly initialized clusters.
"""
num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in self._inputs])
# Note that for mini-batch k-means, we should ensure that the batch size of
# data used during initialization is sufficiently large to avoid duplicated
# clusters.
with ops.control_dependencies(
[check_ops.assert_less_equal(self._num_clusters, num_data)]):
indices = random_ops.random_uniform(
array_ops.reshape(self._num_clusters, [-1]),
minval=0,
maxval=math_ops.cast(num_data, dtypes.int64),
seed=self._random_seed,
dtype=dtypes.int64)
clusters_init = embedding_lookup(
self._inputs, indices, partition_strategy='div')
return clusters_init
示例4: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def _init_clusters_random(data, num_clusters, random_seed):
"""Does random initialization of clusters.
Args:
data: a list of Tensors with a matrix of data, each row is an example.
num_clusters: an integer with the number of clusters.
random_seed: Seed for PRNG used to initialize seeds.
Returns:
A Tensor with num_clusters random rows of data.
"""
assert isinstance(data, list)
num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in data])
with ops.control_dependencies(
[check_ops.assert_less_equal(num_clusters, num_data)]):
indices = random_ops.random_uniform(
[num_clusters],
minval=0,
maxval=math_ops.cast(num_data, dtypes.int64),
seed=random_seed,
dtype=dtypes.int64)
indices %= math_ops.cast(num_data, dtypes.int64)
clusters_init = embedding_lookup(data, indices, partition_strategy='div')
return clusters_init
示例5: __call__
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def __call__(self, inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with vs.variable_scope(scope or "embedding_wrapper"): # "EmbeddingWrapper"
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if type(state) is tuple:
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
示例6: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def _init_clusters_random(data, num_clusters, random_seed):
"""Does random initialization of clusters.
Args:
data: a list of Tensors with a matrix of data, each row is an example.
num_clusters: an integer with the number of clusters.
random_seed: Seed for PRNG used to initialize seeds.
Returns:
A Tensor with num_clusters random rows of data.
"""
assert isinstance(data, list)
num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in data])
with ops.control_dependencies(
[check_ops.assert_less_equal(num_clusters, num_data)]):
indices = random_ops.random_uniform(
[num_clusters],
minval=0,
maxval=math_ops.cast(num_data, dtypes.int64),
seed=random_seed,
dtype=dtypes.int64)
indices = math_ops.cast(indices, dtypes.int32) % num_data
clusters_init = embedding_lookup(data, indices, partition_strategy='div')
return clusters_init
示例7: embedding_rnn_decoder
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def embedding_rnn_decoder(self,initial_state, cell,
attention_states, encode_embed, num_heads=1,
output_projection=None,
feed_previous=False,
update_embedding_for_previous=True, scope=None):
"""RNN decoder with embedding and a pure-decoding option.
"""
if output_projection is not None:
proj_weights = ops.convert_to_tensor(output_projection[0],
dtype=dtypes.float32)
proj_weights.get_shape().assert_is_compatible_with([None, num_symbols])
proj_biases = ops.convert_to_tensor(
output_projection[1], dtype=dtypes.float32)
proj_biases.get_shape().assert_is_compatible_with([num_symbols])
with variable_scope.variable_scope(scope or "embedding_rnn_decoder"):
loop_function = self._extract_argmax_and_embed(
encode_embed, output_projection,
update_embedding_for_previous) if feed_previous else None
# emb_inp = (
# embedding_ops.embedding_lookup(embeddings, i) for i in decoder_inputs)
#emb_inp = decoder_embed
return self.rnn_decoder(encode_embed, attention_states, initial_state, cell,
num_heads=num_heads, loop_function=loop_function)
開發者ID:QingyaoAi,項目名稱:Deep-Listwise-Context-Model-for-Ranking-Refinement,代碼行數:27,代碼來源:RankLSTM_model.py
示例8: listMLE
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def listMLE(self, output, target_indexs, target_rels, name=None):
loss = None
with ops.name_scope(name, "listMLE",[output] + target_indexs + target_rels):
output = tf.nn.l2_normalize(output, 1)
loss = -1.0 * math_ops.reduce_sum(output,1)
print(loss.get_shape())
exp_output = tf.exp(output)
exp_output_table = tf.reshape(exp_output,[-1])
print(exp_output.get_shape())
print(exp_output_table.get_shape())
sum_exp_output = math_ops.reduce_sum(exp_output,1)
loss = tf.add(loss, tf.log(sum_exp_output))
#compute MLE
for i in xrange(self.rank_list_size-1):
idx = target_indexs[i] + tf.to_int64(self.batch_index_bias)
y_i = embedding_ops.embedding_lookup(exp_output_table, idx)
#y_i = tf.gather_nd(exp_output, idx)
sum_exp_output = tf.subtract(sum_exp_output, y_i)
loss = tf.add(loss, tf.log(sum_exp_output))
batch_size = tf.shape(target_rels[0])[0]
return math_ops.reduce_sum(loss) / math_ops.cast(batch_size, dtypes.float32)
開發者ID:QingyaoAi,項目名稱:Deep-Listwise-Context-Model-for-Ranking-Refinement,代碼行數:23,代碼來源:RankLSTM_model.py
示例9: __call__
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def __call__(self, inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with vs.variable_scope(scope or type(self).__name__): # "EmbeddingWrapper"
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if type(state) is tuple:
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
示例10: testIndexedSlicesGradient
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def testIndexedSlicesGradient(self):
with ops.Graph().as_default():
embedding_matrix = tf.get_variable(
"embedding_matrix", [5, 5],
initializer=tf.random_normal_initializer())
def Cond(it, _):
return it < 5
def Body(it, cost):
embedding = embedding_ops.embedding_lookup(embedding_matrix + 0.0, [0])
cost += tf.reduce_sum(embedding)
return it + 1, cost
_, cost = control_flow_ops.while_loop(
Cond, Body, [tf.constant(0), tf.constant(0.0)])
optimizer = momentum.MomentumOptimizer(0.1, 0.9)
train_op = optimizer.minimize(cost)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(10):
sess.run([train_op])
示例11: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def _init_clusters_random(self):
"""Does random initialization of clusters.
Returns:
Tensor of randomly initialized clusters.
"""
num_data = tf.add_n([tf.shape(inp)[0] for inp in self._inputs])
# Note that for mini-batch k-means, we should ensure that the batch size of
# data used during initialization is sufficiently large to avoid duplicated
# clusters.
with tf.control_dependencies(
[tf.assert_less_equal(self._num_clusters, num_data)]):
indices = tf.random_uniform(tf.reshape(self._num_clusters, [-1]),
minval=0,
maxval=tf.cast(num_data, tf.int64),
seed=self._random_seed,
dtype=tf.int64)
clusters_init = embedding_lookup(self._inputs, indices,
partition_strategy='div')
return clusters_init
示例12: __call__
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def __call__(self, inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with vs.variable_scope(scope or type(self).__name__): # "EmbeddingWrapper"
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if type(state) is tuple:
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
示例13: __call__
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def __call__(self, inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with _checked_scope(self, scope or "embedding_wrapper", reuse=self._reuse):
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if type(state) is tuple:
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
示例14: _add_emb_signal
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def _add_emb_signal(self, x, time):
""" add position embedding
:param x:
:param time:
:return:
"""
x_ndims = x.get_shape().ndims
if x_ndims == 2:
position = ops.convert_to_tensor(time, dtype=dtypes.int32)
elif x_ndims == 3:
position = math_ops.range(array_ops.shape(x)[1])
else:
raise ValueError("need a Tensor with rank 2 or 3")
position_emb = embedding_ops.embedding_lookup(
self._position_embedding, position)
return x + array_ops.expand_dims(position_emb, 0)
示例15: __init__
# 需要導入模塊: from tensorflow.python.ops import embedding_ops [as 別名]
# 或者: from tensorflow.python.ops.embedding_ops import embedding_lookup [as 別名]
def __init__(self, dsl_syntax, max_program_len, embedding, start_tokens, end_token, seed=None):
"""Initializer.
Args:
dsl_syntax: Syntax checker for generating next possible tokens.
max_program_len: maximum program length
embedding: A callable that takes a vector tensor of `ids` (argmax ids),
or the `params` argument for `embedding_lookup`. The returned tensor
will be passed to the decoder input.
start_tokens: `int32` vector shaped `[batch_size]`, the start tokens.
end_token: `int32` scalar, the token that marks end of decoding.
seed: The sampling seed.
Raises:
ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a
scalar.
"""
super(SyntacticSampleEmbeddingHelper, self).__init__(
dsl_syntax, max_program_len, embedding, start_tokens, end_token)
self._seed = seed