當前位置: 首頁>>代碼示例>>Python>>正文


Python control_flow_ops.with_dependencies方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.control_flow_ops.with_dependencies方法的典型用法代碼示例。如果您正苦於以下問題:Python control_flow_ops.with_dependencies方法的具體用法?Python control_flow_ops.with_dependencies怎麽用?Python control_flow_ops.with_dependencies使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.control_flow_ops的用法示例。


在下文中一共展示了control_flow_ops.with_dependencies方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _AddLearningRate

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _AddLearningRate(self, initial_learning_rate, decay_steps):
    """Returns a learning rate that decays by 0.96 every decay_steps.

    Args:
      initial_learning_rate: initial value of the learning rate
      decay_steps: decay by 0.96 every this many steps

    Returns:
      learning rate variable.
    """
    step = self.GetStep()
    return cf.with_dependencies(
        [self._IncrementCounter(step)],
        tf.train.exponential_decay(initial_learning_rate,
                                   step,
                                   decay_steps,
                                   0.96,
                                   staircase=True)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:graph_builder.py

示例2: _crop

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _crop(image, offset_height, offset_width, crop_height, crop_width):
  original_shape = tf.shape(image)

  rank_assertion = tf.Assert(
      tf.equal(tf.rank(image), 3),
      ['Rank of image must be equal to 3.'])
  cropped_shape = control_flow_ops.with_dependencies(
      [rank_assertion],
      tf.stack([crop_height, crop_width, original_shape[2]]))

  size_assertion = tf.Assert(
      tf.logical_and(
          tf.greater_equal(original_shape[0], crop_height),
          tf.greater_equal(original_shape[1], crop_width)),
      ['Crop size greater than the image size.'])

  offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))

  # Use tf.slice instead of crop_to_bounding box as it accepts tensors to
  # define the crop size.
  image = control_flow_ops.with_dependencies(
      [size_assertion],
      tf.slice(image, offsets, cropped_shape))
  return tf.reshape(image, cropped_shape) 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:26,代碼來源:utils.py

示例3: flip_left_right

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def flip_left_right(image):
  """Flip an image horizontally (left to right).

  Outputs the contents of `image` flipped along the second dimension, which is
  `width`.

  See also `reverse()`.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  image = control_flow_ops.with_dependencies(
      _Check3DImage(image, require_static=False), image)
  return fix_image_flip_shape(image, array_ops.reverse(image, [1])) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:image_ops_impl.py

示例4: flip_up_down

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def flip_up_down(image):
  """Flip an image horizontally (upside down).

  Outputs the contents of `image` flipped along the first dimension, which is
  `height`.

  See also `reverse()`.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  image = control_flow_ops.with_dependencies(
      _Check3DImage(image, require_static=False), image)
  return fix_image_flip_shape(image, array_ops.reverse(image, [0])) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:image_ops_impl.py

示例5: verify_tensor_all_finite

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def verify_tensor_all_finite(t, msg, name=None):
  """Assert that the tensor does not contain any NaN's or Inf's.

  Args:
    t: Tensor to check.
    msg: Message to log on failure.
    name: A name for this operation (optional).

  Returns:
    Same tensor as `t`.
  """
  with ops.name_scope(name, "VerifyFinite", [t]) as name:
    t = ops.convert_to_tensor(t, name="t")
    with ops.colocate_with(t):
      verify_input = array_ops.check_numerics(t, message=msg)
      out = control_flow_ops.with_dependencies([verify_input], t)
  return out 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:numerics.py

示例6: _sample_n

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    if self.total_count.get_shape().ndims is not None:
      if self.total_count.get_shape().ndims != 0:
        raise NotImplementedError(
            "Sample only supported for scalar number of draws.")
    elif self.validate_args:
      is_scalar = check_ops.assert_rank(
          n_draws, 0,
          message="Sample only supported for scalar number of draws.")
      n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
    k = self.event_shape_tensor()[0]
    # Flatten batch dims so logits has shape [B, k],
    # where B = reduce_prod(self.batch_shape_tensor()).
    draws = random_ops.multinomial(
        logits=array_ops.reshape(self.logits, [-1, k]),
        num_samples=n * n_draws,
        seed=seed)
    draws = array_ops.reshape(draws, shape=[-1, n, n_draws])
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k),
                            axis=-2)  # shape: [B, n, k]
    x = array_ops.transpose(x, perm=[1, 0, 2])
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    return array_ops.reshape(x, final_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:multinomial.py

示例7: _mode

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _mode(self):
    mode = (self.concentration1 - 1.) / (self.total_concentration - 2.)
    if self.allow_nan_stats:
      nan = array_ops.fill(
          self.batch_shape_tensor(),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      is_defined = math_ops.logical_and(self.concentration1 > 1.,
                                        self.concentration0 > 1.)
      return array_ops.where(is_defined, mode, nan)
    return control_flow_ops.with_dependencies([
        check_ops.assert_less(
            array_ops.ones([], dtype=self.dtype),
            self.concentration1,
            message="Mode undefined for concentration1 <= 1."),
        check_ops.assert_less(
            array_ops.ones([], dtype=self.dtype),
            self.concentration0,
            message="Mode undefined for concentration0 <= 1.")
    ], mode) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:beta.py

示例8: _mean

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _mean(self):
    mean = self.loc * array_ops.ones(self.batch_shape_tensor(),
                                     dtype=self.dtype)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.greater(
              self.df,
              array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
          mean,
          array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              check_ops.assert_less(
                  array_ops.ones([], dtype=self.dtype),
                  self.df,
                  message="mean not defined for components of df <= 1"),
          ],
          mean) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:student_t.py

示例9: _mode

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _mode(self):
    k = math_ops.cast(self.event_shape_tensor()[0], self.dtype)
    mode = (self.concentration - 1.) / (
        self.total_concentration[..., array_ops.newaxis] - k)
    if self.allow_nan_stats:
      nan = array_ops.fill(
          array_ops.shape(mode),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      return array_ops.where(
          math_ops.reduce_all(self.concentration > 1., axis=-1),
          mode, nan)
    return control_flow_ops.with_dependencies([
        check_ops.assert_less(
            array_ops.ones([], self.dtype),
            self.concentration,
            message="Mode undefined when any concentration <= 1"),
    ], mode) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:dirichlet.py

示例10: _model_builder

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _model_builder(self):
    """Creates a model function."""

    def _model_fn(features, labels, mode):
      """Model function."""
      assert labels is None, labels
      (all_scores, model_predictions, losses, training_op) = gmm_ops.gmm(
          self._parse_tensor_or_dict(features), self._training_initial_clusters,
          self._num_clusters, self._random_seed, self._covariance_type,
          self._params)
      incr_step = state_ops.assign_add(variables.get_global_step(), 1)
      loss = math_ops.reduce_sum(losses)
      training_op = with_dependencies([training_op, incr_step], loss)
      predictions = {
          GMM.ALL_SCORES: all_scores[0],
          GMM.ASSIGNMENTS: model_predictions[0][0],
      }
      eval_metric_ops = {
          GMM.SCORES: _streaming_sum(loss),
      }
      return model_fn_lib.ModelFnOps(mode=mode, predictions=predictions,
                                     eval_metric_ops=eval_metric_ops,
                                     loss=loss, train_op=training_op)

    return _model_fn 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:gmm.py

示例11: _check_shape

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _check_shape(self, shape):
    """Check that the init arg `shape` defines a valid operator."""
    shape = ops.convert_to_tensor(shape, name="shape")
    if not self._verify_pd:
      return shape

    # Further checks are equivalent to verification that this is positive
    # definite.  Why?  Because the further checks simply check that this is a
    # square matrix, and combining the fact that this is square (and thus maps
    # a vector space R^k onto itself), with the behavior of .matmul(), this must
    # be the identity operator.
    rank = array_ops.size(shape)
    assert_matrix = check_ops.assert_less_equal(2, rank)
    with ops.control_dependencies([assert_matrix]):
      last_dim = array_ops.gather(shape, rank - 1)
      second_to_last_dim = array_ops.gather(shape, rank - 2)
      assert_square = check_ops.assert_equal(last_dim, second_to_last_dim)
      return control_flow_ops.with_dependencies([assert_matrix, assert_square],
                                                shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:operator_pd_identity.py

示例12: _variance

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _variance(self):
    var = (math_ops.square(self.rate)
           / math_ops.square(self.concentration - 1.)
           / (self.concentration - 2.))
    if self.allow_nan_stats:
      nan = array_ops.fill(
          self.batch_shape_tensor(),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      return array_ops.where(self.concentration > 2., var, nan)
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              constant_op.constant(2., dtype=self.dtype),
              self.concentration,
              message="variance undefined when any concentration <= 2"),
      ], var) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:inverse_gamma.py

示例13: _check_chol

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _check_chol(self, chol):
    """Verify that `chol` is proper."""
    chol = ops.convert_to_tensor(chol, name="chol")
    if not self.verify_pd:
      return chol

    shape = array_ops.shape(chol)
    rank = array_ops.rank(chol)

    is_matrix = check_ops.assert_rank_at_least(chol, 2)
    is_square = check_ops.assert_equal(
        array_ops.gather(shape, rank - 2), array_ops.gather(shape, rank - 1))

    deps = [is_matrix, is_square]
    diag = array_ops.matrix_diag_part(chol)
    deps.append(check_ops.assert_positive(diag))

    return control_flow_ops.with_dependencies(deps, chol) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:operator_pd_cholesky.py

示例14: _assert_non_negative_int32_scalar

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def _assert_non_negative_int32_scalar(self, x):
    """Helper which ensures that input is a non-negative, int32, scalar."""
    x = ops.convert_to_tensor(x, name="x")
    if x.dtype.base_dtype != dtypes.int32.base_dtype:
      raise TypeError("%s.dtype=%s is not %s" % (x.name, x.dtype, dtypes.int32))
    x_value_static = tensor_util.constant_value(x)
    if x.get_shape().ndims is not None and x_value_static is not None:
      if x.get_shape().ndims != 0:
        raise ValueError("%s.ndims=%d is not 0 (scalar)" %
                         (x.name, x.get_shape().ndims))
      if x_value_static < 0:
        raise ValueError("%s.value=%d cannot be negative" %
                         (x.name, x_value_static))
      return x
    if self.validate_args:
      x = control_flow_ops.with_dependencies([
          check_ops.assert_rank(x, 0),
          check_ops.assert_non_negative(x)], x)
    return x 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:shape.py

示例15: __init__

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import with_dependencies [as 別名]
def __init__(self,
               event_ndims=0,
               hinge_softness=None,
               validate_args=False,
               name="softplus"):
    with ops.name_scope(name, values=[hinge_softness]):
      if hinge_softness is not None:
        self._hinge_softness = ops.convert_to_tensor(
            hinge_softness, name="hinge_softness")
      else:
        self._hinge_softness = None
      if validate_args:
        nonzero_check = check_ops.assert_none_equal(
            ops.convert_to_tensor(
                0, dtype=self.hinge_softness.dtype),
            self.hinge_softness,
            message="hinge_softness must be non-zero")
        self._hinge_softness = control_flow_ops.with_dependencies(
            [nonzero_check], self.hinge_softness)

    super(Softplus, self).__init__(
        event_ndims=event_ndims,
        validate_args=validate_args,
        name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:softplus_impl.py


注:本文中的tensorflow.python.ops.control_flow_ops.with_dependencies方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。