本文整理匯總了Python中tensorflow.python.ops.control_flow_ops.while_loop方法的典型用法代碼示例。如果您正苦於以下問題:Python control_flow_ops.while_loop方法的具體用法?Python control_flow_ops.while_loop怎麽用?Python control_flow_ops.while_loop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.control_flow_ops
的用法示例。
在下文中一共展示了control_flow_ops.while_loop方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testDebugWhileLoopWatchingWholeGraphWorks
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def testDebugWhileLoopWatchingWholeGraphWorks(self):
with session.Session() as sess:
loop_body = lambda i: math_ops.add(i, 2)
loop_cond = lambda i: math_ops.less(i, 16)
i = constant_op.constant(10, name="i")
loop = control_flow_ops.while_loop(loop_cond, loop_body, [i])
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(run_options,
sess.graph,
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
self.assertEqual(
16, sess.run(loop, options=run_options, run_metadata=run_metadata))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertEqual(
[[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity"))
self.assertEqual(
[[12], [14], [16]],
dump.get_tensors("while/NextIteration", 0, "DebugIdentity"))
示例2: generate_infeed_enqueue_ops_and_dequeue_fn
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def generate_infeed_enqueue_ops_and_dequeue_fn(self):
"""Generates infeed enqueue ops and dequeue_fn."""
# While tf.while_loop is called, the body function, which invokes
# `enqueue_fn` passed in, is called to construct the graph. So, input_fn
# structure is recorded.
enqueue_ops, all_hooks, run_infeed_loop_on_coordinator = (
self._invoke_input_fn_and_record_structure())
self._validate_input_pipeline()
def dequeue_fn():
"""dequeue_fn is used by TPU to retrieve the tensors."""
# In the model-parallel case, both the host-side and device-side
# computations must agree on the core on which infeed takes place. We
# choose to perform infeed on logical core 0 of each replica.
values = self._infeed_queue.generate_dequeue_op(tpu_device=0)
# The unflatten process uses the structure information recorded above.
return self._inputs_structure_recorder.unflatten_features_and_labels(
values)
return (enqueue_ops, dequeue_fn, all_hooks, run_infeed_loop_on_coordinator)
示例3: _wrap_computation_in_while_loop
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def _wrap_computation_in_while_loop(device, op_fn):
"""Wraps the ops generated by `op_fn` in tf.while_loop."""
def computation(i):
with ops.control_dependencies(op_fn()):
return i + 1
iterations_per_loop_var = _create_or_get_iterations_per_loop()
# By setting parallel_iterations=1, the parallel execution in while_loop is
# basically turned off.
with ops.device(device):
iterations = array_ops.identity(iterations_per_loop_var)
return control_flow_ops.while_loop(
lambda i: i < iterations,
computation, [constant_op.constant(0)],
parallel_iterations=1)
示例4: _wrap_computation_in_while_loop_with_stopping_signals
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def _wrap_computation_in_while_loop_with_stopping_signals(device, op_fn):
"""Wraps the ops generated by `op_fn` in tf.while_loop."""
def cond(scalar_stopping_signal):
return math_ops.logical_not(
_StopSignals.should_stop(scalar_stopping_signal))
def computation(unused_scalar_stopping_signal):
return_value = op_fn()
execute_ops = return_value['ops']
signals = return_value['signals']
with ops.control_dependencies(execute_ops):
return _StopSignals.as_scalar_stopping_signal(signals)
# By setting parallel_iterations=1, the parallel execution in while_loop is
# basically turned off.
with ops.device(device):
return control_flow_ops.while_loop(
cond,
computation, [_StopSignals.NON_STOPPING_SIGNAL],
parallel_iterations=1)
示例5: testIndexedSlicesGradient
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def testIndexedSlicesGradient(self):
with ops.Graph().as_default():
embedding_matrix = tf.get_variable(
"embedding_matrix", [5, 5],
initializer=tf.random_normal_initializer())
def Cond(it, _):
return it < 5
def Body(it, cost):
embedding = embedding_ops.embedding_lookup(embedding_matrix + 0.0, [0])
cost += tf.reduce_sum(embedding)
return it + 1, cost
_, cost = control_flow_ops.while_loop(
Cond, Body, [tf.constant(0), tf.constant(0.0)])
optimizer = momentum.MomentumOptimizer(0.1, 0.9)
train_op = optimizer.minimize(cost)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(10):
sess.run([train_op])
示例6: testIndexedSlicesWithDynamicShapeGradientInWhileLoop
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def testIndexedSlicesWithDynamicShapeGradientInWhileLoop(self):
for dtype in [dtypes.float32, dtypes.float64]:
with self.test_session() as sess:
inputs = tf.placeholder(dtype=dtype)
initial_outputs = tf.TensorArray(dtype=dtype, dynamic_size=True,
size=1)
initial_i = tf.constant(0, dtype=dtypes.int32)
def Cond(i, _):
return i < tf.size(inputs) # pylint: disable=cell-var-from-loop
def Body(i, outputs):
x = tf.gather(inputs, i) # pylint: disable=cell-var-from-loop
outputs = outputs.write(i, x)
return i + 1, outputs
_, outputs = tf.while_loop(Cond, Body, [initial_i, initial_outputs])
outputs = tf.reduce_sum(outputs.pack())
r = tf.gradients([outputs], [inputs])[0]
grad_wr_inputs = ops.convert_to_tensor(r)
o, grad = sess.run([outputs, grad_wr_inputs],
feed_dict={inputs: [1, 3, 2]})
self.assertEquals(o, 6)
self.assertAllEqual(grad, [1] * 3)
示例7: testDebugWhileLoopWatchingWholeGraphWorks
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def testDebugWhileLoopWatchingWholeGraphWorks(self):
with session.Session() as sess:
loop_body = lambda i: math_ops.add(i, 2)
loop_cond = lambda i: math_ops.less(i, 16)
i = constant_op.constant(10, name="i")
loop = control_flow_ops.while_loop(loop_cond, loop_body, [i])
loop_result, dump = self._debug_run_and_get_dump(sess, loop)
self.assertEqual(16, loop_result)
self.assertEqual(
[[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity"))
self.assertEqual(
[[12], [14], [16]],
dump.get_tensors("while/NextIteration", 0, "DebugIdentity"))
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:18,代碼來源:session_debug_testlib.py
示例8: predict
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def predict(self, input_x, h_0=None):
if h_0 is None:
h_0 = self.h_0
def _g_recurrence(i, x_t, h_tm1, o_t):
h_t = self.g_recurrent_unit(x_t, h_tm1) # hidden_memory_tuple
o_t = self.g_output_unit(h_t) # batch x vocab , logits not prob
x_tp1 = tf.squeeze(tf.slice(input_x, begin=[0, i, 0], size=[self.batch_size_scale, 1, self.num_vocabulary]))
return i + 1, x_tp1, h_t, o_t
o_0 = tf.constant(np.zeros(shape=[self.batch_size_scale, self.num_classes]))
o_0 = tf.cast(o_0, dtype=tf.float32)
_, _, h_t, output = control_flow_ops.while_loop(
cond=lambda i, _1, _2, _3: i < self.sequence_length,
body=_g_recurrence,
loop_vars=(tf.constant(0, dtype=tf.int32),
tf.nn.embedding_lookup(self.one_hot, self.start_token), self.h0, o_0))
return output
示例9: _repeat_range
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def _repeat_range(counts, name=None):
"""Repeat integers given by range(len(counts)) each the given number of times.
Example behavior:
[0, 1, 2, 3] -> [1, 2, 2, 3, 3, 3]
Args:
counts: 1D tensor with dtype=int32.
name: optional name for operation.
Returns:
1D tensor with dtype=int32 and dynamic length giving the repeated integers.
"""
with ops.name_scope(name, 'repeat_range', [counts]) as scope:
counts = ops.convert_to_tensor(counts, name='counts')
def cond(unused_output, i):
return i < size
def body(output, i):
value = array_ops.fill(counts[i:i+1], i)
return (output.write(i, value), i + 1)
size = array_ops.shape(counts)[0]
init_output_array = tensor_array_ops.TensorArray(
dtype=dtypes.int32, size=size, infer_shape=False)
output_array, num_writes = control_flow_ops.while_loop(
cond, body, loop_vars=[init_output_array, 0])
return control_flow_ops.cond(
num_writes > 0,
output_array.concat,
lambda: array_ops.zeros(shape=[0], dtype=dtypes.int32),
name=scope)
示例10: setUpClass
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def setUpClass(cls):
cls._dump_root = tempfile.mkdtemp()
with session.Session() as sess:
loop_var = constant_op.constant(0, name="while_loop_test/loop_var")
cond = lambda loop_var: math_ops.less(loop_var, 10)
body = lambda loop_var: math_ops.add(loop_var, 1)
while_loop = control_flow_ops.while_loop(
cond, body, [loop_var], parallel_iterations=1)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_url = "file://%s" % cls._dump_root
watch_opts = run_options.debug_options.debug_tensor_watch_opts
# Add debug tensor watch for "while/Identity".
watch = watch_opts.add()
watch.node_name = "while/Identity"
watch.output_slot = 0
watch.debug_ops.append("DebugIdentity")
watch.debug_urls.append(debug_url)
# Invoke Session.run().
run_metadata = config_pb2.RunMetadata()
sess.run(while_loop, options=run_options, run_metadata=run_metadata)
cls._debug_dump = debug_data.DebugDumpDir(
cls._dump_root, partition_graphs=run_metadata.partition_graphs)
cls._analyzer = analyzer_cli.DebugAnalyzer(cls._debug_dump)
cls._registry = debugger_cli_common.CommandHandlerRegistry()
cls._registry.register_command_handler(
"list_tensors",
cls._analyzer.list_tensors,
cls._analyzer.get_help("list_tensors"),
prefix_aliases=["lt"])
cls._registry.register_command_handler(
"print_tensor",
cls._analyzer.print_tensor,
cls._analyzer.get_help("print_tensor"),
prefix_aliases=["pt"])
示例11: _predict_on_tpu_system
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def _predict_on_tpu_system(ctx, model_fn_wrapper, dequeue_fn):
"""Executes `model_fn_wrapper` multiple times on all TPU shards."""
(single_tpu_predict_step, host_calls, captured_scaffold_fn,
captured_predict_hooks
) = model_fn_wrapper.convert_to_single_tpu_predict_step(dequeue_fn)
def multi_tpu_predict_steps_on_single_shard():
def cond(scalar_stopping_signal):
return math_ops.logical_not(
_StopSignals.should_stop(scalar_stopping_signal))
inputs = [_StopSignals.NON_STOPPING_SIGNAL]
outputs = training_loop.while_loop(
cond, single_tpu_predict_step, inputs=inputs, name=b'loop')
return outputs
(compile_op, dummy_predict_op,) = tpu.split_compile_and_shard(
multi_tpu_predict_steps_on_single_shard,
inputs=[],
num_shards=ctx.num_replicas,
outputs_from_all_shards=False,
device_assignment=ctx.device_assignment)
dummy_predict_op = dummy_predict_op[0]
scaffold = _get_scaffold(captured_scaffold_fn)
return (compile_op, dummy_predict_op, host_calls, scaffold,
captured_predict_hooks.get())
示例12: compute_gt_cluster_score
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def compute_gt_cluster_score(pairwise_distances, labels):
"""Compute ground truth facility location score.
Loop over each unique classes and compute average travel distances.
Args:
pairwise_distances: 2-D Tensor of pairwise distances.
labels: 1-D Tensor of ground truth cluster assignment.
Returns:
gt_cluster_score: dtypes.float32 score.
"""
unique_class_ids = array_ops.unique(labels)[0]
num_classes = array_ops.size(unique_class_ids)
iteration = array_ops.constant(0)
gt_cluster_score = array_ops.constant(0.0, dtype=dtypes.float32)
def func_cond(iteration, gt_cluster_score):
del gt_cluster_score # Unused argument.
return iteration < num_classes
def func_body(iteration, gt_cluster_score):
"""Per each cluster, compute the average travel distance."""
mask = math_ops.equal(labels, unique_class_ids[iteration])
this_cluster_ids = array_ops.where(mask)
pairwise_distances_subset = array_ops.transpose(
array_ops.gather(
array_ops.transpose(
array_ops.gather(pairwise_distances, this_cluster_ids)),
this_cluster_ids))
this_cluster_score = -1.0 * math_ops.reduce_min(
math_ops.reduce_sum(
pairwise_distances_subset, axis=0))
return iteration + 1, gt_cluster_score + this_cluster_score
_, gt_cluster_score = control_flow_ops.while_loop(
func_cond, func_body, [iteration, gt_cluster_score])
return gt_cluster_score
示例13: setUpClass
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def setUpClass(cls):
cls._dump_root = tempfile.mkdtemp()
with session.Session() as sess:
loop_var = constant_op.constant(0, name="while_loop_test/loop_var")
cond = lambda loop_var: math_ops.less(loop_var, 10)
body = lambda loop_var: math_ops.add(loop_var, 1)
while_loop = control_flow_ops.while_loop(
cond, body, [loop_var], parallel_iterations=1)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_url = "file://%s" % cls._dump_root
watch_opts = run_options.debug_tensor_watch_opts
# Add debug tensor watch for "while/Identity".
watch = watch_opts.add()
watch.node_name = "while/Identity"
watch.output_slot = 0
watch.debug_ops.append("DebugIdentity")
watch.debug_urls.append(debug_url)
# Invoke Session.run().
run_metadata = config_pb2.RunMetadata()
sess.run(while_loop, options=run_options, run_metadata=run_metadata)
cls._debug_dump = debug_data.DebugDumpDir(
cls._dump_root, partition_graphs=run_metadata.partition_graphs)
cls._analyzer = analyzer_cli.DebugAnalyzer(cls._debug_dump)
cls._registry = debugger_cli_common.CommandHandlerRegistry()
cls._registry.register_command_handler(
"list_tensors",
cls._analyzer.list_tensors,
cls._analyzer.get_help("list_tensors"),
prefix_aliases=["lt"])
cls._registry.register_command_handler(
"print_tensor",
cls._analyzer.print_tensor,
cls._analyzer.get_help("print_tensor"),
prefix_aliases=["pt"])
示例14: testIndexedSlicesGradientInCondInWhileLoop
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def testIndexedSlicesGradientInCondInWhileLoop(self):
with ops.Graph().as_default():
embedding_matrix = tf.get_variable(
"embedding_matrix", [5, 5],
initializer=tf.random_normal_initializer())
def Cond(it, _):
return it < 5
def Body(it, cost):
embedding = embedding_ops.embedding_lookup(embedding_matrix, [0])
cost = tf.cond(tf.equal(it, 3),
lambda: tf.square(cost),
lambda: cost + tf.reduce_sum(embedding))
return it + 1, cost
_, cost = control_flow_ops.while_loop(
Cond, Body, [tf.constant(0), tf.constant(0.0)])
dynamic_grads = tf.gradients(cost, [embedding_matrix])[0]
dynamic_grads = tf.segment_sum(dynamic_grads.values,
dynamic_grads.indices)
embedding = embedding_ops.embedding_lookup(embedding_matrix, [0])
static = tf.square(
tf.reduce_sum(embedding) +
tf.reduce_sum(embedding) +
tf.reduce_sum(embedding)) + tf.reduce_sum(embedding)
static_grads = tf.gradients(static, [embedding_matrix])[0]
static_grads = tf.segment_sum(static_grads.values, static_grads.indices)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllEqual(*sess.run([static_grads, dynamic_grads]))
示例15: testIndexedSlicesWithShapeGradientInWhileLoop
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import while_loop [as 別名]
def testIndexedSlicesWithShapeGradientInWhileLoop(self):
for dtype in [dtypes.float32, dtypes.float64]:
with self.test_session() as sess:
num_steps = 9
inputs = tf.placeholder(dtype=dtype, shape=[num_steps])
initial_outputs = tf.TensorArray(dtype=dtype, size=num_steps)
initial_i = tf.constant(0, dtype=dtypes.int32)
def Cond(i, _):
return i < num_steps # pylint: disable=cell-var-from-loop
def Body(i, outputs):
x = tf.gather(inputs, i) # pylint: disable=cell-var-from-loop
outputs = outputs.write(i, x)
return i + 1, outputs
_, outputs = tf.while_loop(Cond, Body, [initial_i, initial_outputs])
outputs = tf.reduce_sum(outputs.pack())
r = tf.gradients([outputs], [inputs])[0]
grad_wr_inputs = ops.convert_to_tensor(r)
o, grad = sess.run([outputs, grad_wr_inputs],
feed_dict={inputs: [4, 6, 0, 7, 0, 0, 1, 2, 0]})
self.assertEquals(o, 20)
self.assertAllEqual(grad, [1] * num_steps)