本文整理匯總了Python中tensorflow.python.ops.control_flow_ops.no_op方法的典型用法代碼示例。如果您正苦於以下問題:Python control_flow_ops.no_op方法的具體用法?Python control_flow_ops.no_op怎麽用?Python control_flow_ops.no_op使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.control_flow_ops
的用法示例。
在下文中一共展示了control_flow_ops.no_op方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: variables_initializer
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def variables_initializer(var_list, name="init"):
"""Returns an Op that initializes a list of variables.
After you launch the graph in a session, you can run the returned Op to
initialize all the variables in `var_list`. This Op runs all the
initializers of the variables in `var_list` in parallel.
Calling `initialize_variables()` is equivalent to passing the list of
initializers to `Group()`.
If `var_list` is empty, however, the function still returns an Op that can
be run. That Op just has no effect.
Args:
var_list: List of `Variable` objects to initialize.
name: Optional name for the returned operation.
Returns:
An Op that run the initializers of all the specified variables.
"""
if var_list:
return control_flow_ops.group(*[v.initializer for v in var_list], name=name)
return control_flow_ops.no_op(name=name)
示例2: assert_zero_imag_part
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def assert_zero_imag_part(x, message=None, name="assert_zero_imag_part"):
"""Returns `Op` that asserts Tensor `x` has no non-zero imaginary parts.
Args:
x: Numeric `Tensor`, real, integer, or complex.
message: A string message to prepend to failure message.
name: A name to give this `Op`.
Returns:
An `Op` that asserts `x` has no entries with modulus zero.
"""
with ops.name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
dtype = x.dtype.base_dtype
if dtype.is_floating:
return control_flow_ops.no_op()
zero = ops.convert_to_tensor(0, dtype=dtype.real_dtype)
return check_ops.assert_equal(zero, math_ops.imag(x), message=message)
示例3: insert
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def insert(self, ids, scores):
"""Insert the ids and scores into the TopN."""
with ops.control_dependencies(self.last_ops):
scatter_op = state_ops.scatter_update(self.id_to_score, ids, scores)
larger_scores = math_ops.greater(scores, self.sl_scores[0])
def shortlist_insert():
larger_ids = array_ops.boolean_mask(
math_ops.to_int64(ids), larger_scores)
larger_score_values = array_ops.boolean_mask(scores, larger_scores)
shortlist_ids, new_ids, new_scores = tensor_forest_ops.top_n_insert(
self.sl_ids, self.sl_scores, larger_ids, larger_score_values)
u1 = state_ops.scatter_update(self.sl_ids, shortlist_ids, new_ids)
u2 = state_ops.scatter_update(self.sl_scores, shortlist_ids, new_scores)
return control_flow_ops.group(u1, u2)
# We only need to insert into the shortlist if there are any
# scores larger than the threshold.
cond_op = control_flow_ops.cond(
math_ops.reduce_any(larger_scores), shortlist_insert,
control_flow_ops.no_op)
with ops.control_dependencies([cond_op]):
self.last_ops = [scatter_op, cond_op]
示例4: _sync_variables_ops
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def _sync_variables_ops(ctx):
"""Create varriables synchronization ops.
Gets the variables back from TPU nodes. This means the variables updated
by TPU will now be *synced* to host memory.
In BROADCAST mode, we skip this sync since the variables are ususally too
big to transmit via RPC.
Args:
ctx: A `_InternalTPUContext` instance with mode.
Returns:
A list of sync ops.
"""
if not ctx.is_input_broadcast_with_iterators():
return [
array_ops.check_numerics(v.read_value(),
'Gradient for %s is NaN' % v.name).op
for v in variables.trainable_variables()
]
else:
return [control_flow_ops.no_op()]
示例5: assert_type
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def assert_type(tensor, tf_type, message=None, name=None):
"""Statically asserts that the given `Tensor` is of the specified type.
Args:
tensor: A tensorflow `Tensor`.
tf_type: A tensorflow type (`dtypes.float32`, `tf.int64`, `dtypes.bool`,
etc).
message: A string to prefix to the default message.
name: A name to give this `Op`. Defaults to "assert_type"
Raises:
TypeError: If the tensors data type doesn't match `tf_type`.
Returns:
A `no_op` that does nothing. Type can be determined statically.
"""
message = message or ''
with ops.name_scope(name, 'assert_type', [tensor]):
tensor = ops.convert_to_tensor(tensor, name='tensor')
if tensor.dtype != tf_type:
raise TypeError(
'%s %s must be of type %s' % (message, tensor.op.name, tf_type))
return control_flow_ops.no_op('statically_determined_correct_type')
示例6: _resource_apply_sparse
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def _resource_apply_sparse(self, grad_values, var, grad_indices):
return control_flow_ops.no_op()
示例7: _apply_sparse
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def _apply_sparse(self, grad, var):
return control_flow_ops.no_op()
示例8: testOutputSlotWithoutOutgoingEdgeCanBeWatched
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def testOutputSlotWithoutOutgoingEdgeCanBeWatched(self):
"""Test watching output slots not attached to any outgoing edges."""
with session.Session() as sess:
u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]])
u = constant_op.constant(u_init_val, shape=[2, 2], name="u")
# Create a control edge from a node with an output: From u to z.
# Node u will get executed only because of the control edge. The output
# tensor u:0 is not attached to any outgoing edge in the graph. This test
# checks that the debugger can watch such a tensor.
with ops.control_dependencies([u]):
z = control_flow_ops.no_op(name="z")
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugIdentity"],
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
sess.run(z, options=run_options, run_metadata=run_metadata)
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
# Assert that the DebugIdentity watch on u works properly.
self.assertEqual(1, len(dump.dumped_tensor_data))
datum = dump.dumped_tensor_data[0]
self.assertEqual("u", datum.node_name)
self.assertEqual(0, datum.output_slot)
self.assertEqual("DebugIdentity", datum.debug_op)
self.assertAllClose([[5.0, 3.0], [-1.0, 0.0]], datum.get_tensor())
示例9: get
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def get(self, name=None):
"""Gets one element from this staging area.
If the staging area is empty when this operation executes, it will block
until there is an element to dequeue.
Note that unlike others ops that can block, like the queue Dequeue
operations, this can stop other work from happening. To avoid this, the
intended use is for this to be called only when there will be an element
already available. One method for doing this in a training loop would be to
run a `put()` call during a warmup session.run call, and then call both
`get()` and `put()` in each subsequent step.
The placement of the returned tensor will be determined by the current
device scope when this function is called.
Args:
name: A name for the operation (optional).
Returns:
The tuple of tensors that was gotten.
"""
if name is None:
name = "%s_get" % self._name
with ops.colocate_with(self._coloc_op):
ret = gen_data_flow_ops.unstage(dtypes=self._dtypes,
shared_name=self._name, name=name)
curr_device_scope = control_flow_ops.no_op().device
if curr_device_scope != self._coloc_op.device:
for i in range(len(ret)):
ret[i] = array_ops.identity(ret[i])
for output, shape in zip(ret, self._shapes):
output.set_shape(shape)
return self._get_return_value(ret)
示例10: initialize_resources
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def initialize_resources(resource_list, name="init"):
"""Initializes the resources in the given list.
Args:
resource_list: list of resources to initialize.
name: name of the initialization op.
Returns:
op responsible for initializing all resources.
"""
if resource_list:
return control_flow_ops.group(*[r.create for r in resource_list], name=name)
return control_flow_ops.no_op(name=name)
示例11: assert_integer
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def assert_integer(x, message=None, name=None):
"""Assert that `x` is of integer dtype.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_integer(x)]):
output = tf.reduce_sum(x)
```
Args:
x: `Tensor` whose basetype is integer and is not quantized.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to "assert_integer".
Raises:
TypeError: If `x.dtype` is anything other than non-quantized integer.
Returns:
A `no_op` that does nothing. Type can be determined statically.
"""
message = message or ''
with ops.name_scope(name, 'assert_integer', [x]):
x = ops.convert_to_tensor(x, name='x')
if not x.dtype.is_integer:
err_msg = (
'%s Expected "x" to be integer type. Found: %s of dtype %s'
% (message, x.name, x.dtype))
raise TypeError(err_msg)
return control_flow_ops.no_op('statically_determined_was_integer')
示例12: tables_initializer
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def tables_initializer(name="init_all_tables"):
"""Returns an Op that initializes all tables of the default graph.
Args:
name: Optional name for the initialization op.
Returns:
An Op that initializes all tables. Note that if there are
not tables the returned Op is a NoOp.
"""
initializers = ops.get_collection(ops.GraphKeys.TABLE_INITIALIZERS)
if initializers:
return control_flow_ops.group(*initializers, name=name)
return control_flow_ops.no_op(name=name)
示例13: init
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def init(self):
"""The table initialization op."""
if self._table:
return self._table.init
with ops.name_scope(None, "init"):
return control_flow_ops.no_op()
示例14: _enqueue_join
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def _enqueue_join(queue, tensor_list_list, enqueue_many, keep_input):
"""Enqueue `tensor_list_list` in `queue`."""
if enqueue_many:
enqueue_fn = queue.enqueue_many
else:
enqueue_fn = queue.enqueue
if keep_input.get_shape().ndims == 1:
enqueue_ops = [enqueue_fn(_select_which_to_enqueue(x, keep_input))
for x in tensor_list_list]
else:
enqueue_ops = [_smart_cond(
keep_input,
lambda: enqueue_fn(tl), # pylint:disable=cell-var-from-loop
control_flow_ops.no_op) for tl in tensor_list_list]
queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops))
示例15: _enqueue
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import no_op [as 別名]
def _enqueue(queue, tensor_list, threads, enqueue_many, keep_input):
"""Enqueue `tensor_list` in `queue`."""
if enqueue_many:
enqueue_fn = queue.enqueue_many
else:
enqueue_fn = queue.enqueue
if keep_input.get_shape().ndims == 1:
enqueue_ops = [
enqueue_fn(_select_which_to_enqueue(tensor_list, keep_input))] * threads
else:
enqueue_ops = [_smart_cond(
keep_input,
lambda: enqueue_fn(tensor_list),
control_flow_ops.no_op)] * threads
queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops))