本文整理匯總了Python中tensorflow.python.ops.control_flow_ops.case方法的典型用法代碼示例。如果您正苦於以下問題:Python control_flow_ops.case方法的具體用法?Python control_flow_ops.case怎麽用?Python control_flow_ops.case使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.control_flow_ops
的用法示例。
在下文中一共展示了control_flow_ops.case方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: rot90
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
image = control_flow_ops.with_dependencies(
_Check3DImage(image, require_static=False), image)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot90():
return array_ops.transpose(array_ops.reverse_v2(image, [1]),
[1, 0, 2])
def _rot180():
return array_ops.reverse_v2(image, [0, 1])
def _rot270():
return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
[1])
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
name=scope)
ret.set_shape([None, None, image.get_shape()[2]])
return ret
示例2: _decode
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`. If image
format is `raw`, all images are expected to be in this format, otherwise
this op can decode a mix of `jpg` and `png` formats.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_image():
"""Decodes a png or jpg based on the headers."""
return image_ops.decode_image(image_buffer, self._channels)
def decode_raw():
"""Decodes a raw image."""
return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
image = control_flow_ops.case(
pred_fn_pairs, default=decode_image, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
示例3: rot90
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot90():
return array_ops.transpose(array_ops.reverse_v2(image, [1]),
[1, 0, 2])
def _rot180():
return array_ops.reverse_v2(image, [0, 1])
def _rot270():
return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
[1])
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
name=scope)
ret.set_shape([None, None, image.get_shape()[2]])
return ret
示例4: _Encoder
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _Encoder(self, image, image_format):
assert image_format in ['jpeg', 'JPEG', 'png', 'PNG', 'raw', 'RAW']
if image_format in ['jpeg', 'JPEG']:
tf_image = tf.constant(image, dtype=tf.uint8)
return image_ops.encode_jpeg(tf_image)
if image_format in ['png', 'PNG']:
tf_image = tf.constant(image, dtype=tf.uint8)
return image_ops.encode_png(tf_image)
if image_format in ['raw', 'RAW']:
# If machine is big endian, change the byte ordering in case of dtype
# float32 so that it should be interpreted correctly.
if image.dtype == np.float32 and sys.byteorder == 'big':
image = image.astype('<f4')
return tf.constant(image.tostring(), dtype=tf.string)
示例5: rot90
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot90():
return array_ops.transpose(array_ops.reverse(image, [False, True, False]),
[1, 0, 2])
def _rot180():
return array_ops.reverse(image, [True, True, False])
def _rot270():
return array_ops.reverse(array_ops.transpose(image, [1, 0, 2]),
[False, True, False])
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
name=scope)
ret.set_shape([None, None, image.get_shape()[2]])
return ret
示例6: _decode
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: T tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`.
Returns:
A decoder image.
"""
def decode_png():
return image_ops.decode_png(image_buffer, self._channels)
def decode_raw():
return parsing_ops.decode_raw(image_buffer, dtypes.uint8)
def decode_jpg():
return image_ops.decode_jpeg(image_buffer, self._channels)
image = control_flow_ops.case({
math_ops.logical_or(math_ops.equal(image_format, 'png'),
math_ops.equal(image_format, 'PNG')): decode_png,
math_ops.logical_or(math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}, default=decode_jpg, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
示例7: testDecodeImageWithItemHandlerCallback
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def testDecodeImageWithItemHandlerCallback(self):
image_shape = (2, 3, 3)
for image_encoding in ['jpeg', 'png']:
image, serialized_example = self.GenerateImage(
image_format=image_encoding, image_shape=image_shape)
with self.test_session():
def ConditionalDecoding(keys_to_tensors):
"""See base class."""
image_buffer = keys_to_tensors['image/encoded']
image_format = keys_to_tensors['image/format']
def DecodePng():
return image_ops.decode_png(image_buffer, 3)
def DecodeJpg():
return image_ops.decode_jpeg(image_buffer, 3)
image = control_flow_ops.case(
{
math_ops.equal(image_format, 'png'): DecodePng,
},
default=DecodeJpg,
exclusive=True)
image = array_ops.reshape(image, image_shape)
return image
keys_to_features = {
'image/encoded':
parsing_ops.FixedLenFeature(
(), dtypes.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature(
(), dtypes.string, default_value='jpeg')
}
items_to_handlers = {
'image':
tfexample_decoder.ItemHandlerCallback(
['image/encoded', 'image/format'], ConditionalDecoding)
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image] = decoder.decode(serialized_example, ['image'])
decoded_image = tf_image.eval()
if image_encoding == 'jpeg':
# For jenkins:
image = image.astype(np.float32)
decoded_image = decoded_image.astype(np.float32)
self.assertAllClose(image, decoded_image, rtol=.5, atol=1.001)
else:
self.assertAllClose(image, decoded_image, atol=0)
示例8: _decode
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_png():
return image_ops.decode_png(image_buffer, self._channels)
def decode_raw():
return parsing_ops.decode_raw(image_buffer, dtypes.uint8)
def decode_jpg():
return image_ops.decode_jpeg(image_buffer, self._channels)
# For RGBA images JPEG is not a valid decoder option.
if self._channels > 3:
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
default_decoder = decode_png
else:
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'png'),
math_ops.equal(image_format, 'PNG')): decode_png,
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
default_decoder = decode_jpg
image = control_flow_ops.case(
pred_fn_pairs, default=default_decoder, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
示例9: testDecodeImageWithItemHandlerCallback
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def testDecodeImageWithItemHandlerCallback(self):
image_shape = (2, 3, 3)
for image_encoding in ['jpeg', 'png']:
image, serialized_example = self.GenerateImage(
image_format=image_encoding, image_shape=image_shape)
with self.cached_session():
def ConditionalDecoding(keys_to_tensors):
"""See base class."""
image_buffer = keys_to_tensors['image/encoded']
image_format = keys_to_tensors['image/format']
def DecodePng():
return image_ops.decode_png(image_buffer, 3)
def DecodeJpg():
return image_ops.decode_jpeg(image_buffer, 3)
image = control_flow_ops.case(
{
math_ops.equal(image_format, 'png'): DecodePng,
},
default=DecodeJpg,
exclusive=True)
image = array_ops.reshape(image, image_shape)
return image
keys_to_features = {
'image/encoded':
parsing_ops.FixedLenFeature((), tf.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature((), tf.string, default_value='jpeg')
}
items_to_handlers = {
'image':
tfexample_decoder.ItemHandlerCallback(
['image/encoded', 'image/format'], ConditionalDecoding)
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image] = decoder.decode(serialized_example, ['image'])
decoded_image = tf_image.eval()
if image_encoding == 'jpeg':
# For jenkins:
image = image.astype(np.float32)
decoded_image = decoded_image.astype(np.float32)
self.assertAllClose(image, decoded_image, rtol=.5, atol=1.001)
else:
self.assertAllClose(image, decoded_image, atol=0)
示例10: _decode
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`. If image
format is `raw`, all images are expected to be in this format, otherwise
this op can decode a mix of `jpg` and `png` formats.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_image():
"""Decodes a image based on the headers."""
return math_ops.cast(
image_ops.decode_image(image_buffer, channels=self._channels),
self._dtype)
def decode_jpeg():
"""Decodes a jpeg image with specified '_dct_method'."""
return math_ops.cast(
image_ops.decode_jpeg(
image_buffer,
channels=self._channels,
dct_method=self._dct_method), self._dtype)
def check_jpeg():
"""Checks if an image is jpeg."""
# For jpeg, we directly use image_ops.decode_jpeg rather than decode_image
# in order to feed the jpeg specify parameter 'dct_method'.
return control_flow_ops.cond(
image_ops.is_jpeg(image_buffer),
decode_jpeg,
decode_image,
name='cond_jpeg')
def decode_raw():
"""Decodes a raw image."""
return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)
pred_fn_pairs = [(math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')), decode_raw)]
image = control_flow_ops.case(
pred_fn_pairs, default=check_jpeg, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
示例11: rot90
# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, bboxes, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
image = control_flow_ops.with_dependencies(
_Check3DImage(image, require_static=False), image)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot_bboxes90(bboxes):
return tf.stack([1 - bboxes[:, 3], bboxes[:, 0],
1 - bboxes[:, 1], bboxes[:, 2]], axis=-1)
def _rot_bboxes180(bboxes):
return tf.stack([1 - bboxes[:, 2], 1 - bboxes[:, 3],
1 - bboxes[:, 0], 1 - bboxes[:, 1]], axis=-1)
def _rot_bboxes270(bboxes):
return tf.stack([bboxes[:, 1], 1 - bboxes[:, 2],
bboxes[:, 3], 1 - bboxes[:, 0]], axis=-1)
def _rot90():
return array_ops.transpose(array_ops.reverse_v2(image, [1]),
[1, 0, 2]), _rot_bboxes90(bboxes)
def _rot180():
return array_ops.reverse_v2(image, [0, 1]), _rot_bboxes180(bboxes)
def _rot270():
return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
[1]), _rot_bboxes270(bboxes)
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret_image, ret_bbox = control_flow_ops.case(cases, default=lambda: (image, bboxes), exclusive=True,
name=scope)
ret_image.set_shape([None, None, image.get_shape()[2]])
return ret_image, ret_bbox