當前位置: 首頁>>代碼示例>>Python>>正文


Python control_flow_ops.case方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.control_flow_ops.case方法的典型用法代碼示例。如果您正苦於以下問題:Python control_flow_ops.case方法的具體用法?Python control_flow_ops.case怎麽用?Python control_flow_ops.case使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.control_flow_ops的用法示例。


在下文中一共展示了control_flow_ops.case方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: rot90

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, k=1, name=None):
  """Rotate an image counter-clockwise by 90 degrees.

  Args:
    image: A 3-D tensor of shape `[height, width, channels]`.
    k: A scalar integer. The number of times the image is rotated by 90 degrees.
    name: A name for this operation (optional).

  Returns:
    A rotated 3-D tensor of the same type and shape as `image`.
  """
  with ops.name_scope(name, 'rot90', [image, k]) as scope:
    image = ops.convert_to_tensor(image, name='image')
    image = control_flow_ops.with_dependencies(
        _Check3DImage(image, require_static=False), image)
    k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
    k.get_shape().assert_has_rank(0)
    k = math_ops.mod(k, 4)

    def _rot90():
      return array_ops.transpose(array_ops.reverse_v2(image, [1]),
                                 [1, 0, 2])
    def _rot180():
      return array_ops.reverse_v2(image, [0, 1])
    def _rot270():
      return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
                                  [1])
    cases = [(math_ops.equal(k, 1), _rot90),
             (math_ops.equal(k, 2), _rot180),
             (math_ops.equal(k, 3), _rot270)]

    ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
                                name=scope)
    ret.set_shape([None, None, image.get_shape()[2]])
    return ret 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:37,代碼來源:image_ops_impl.py

示例2: _decode

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
    """Decodes the image buffer.

    Args:
      image_buffer: The tensor representing the encoded image tensor.
      image_format: The image format for the image in `image_buffer`. If image
        format is `raw`, all images are expected to be in this format, otherwise
        this op can decode a mix of `jpg` and `png` formats.

    Returns:
      A tensor that represents decoded image of self._shape, or
      (?, ?, self._channels) if self._shape is not specified.
    """
    def decode_image():
      """Decodes a png or jpg based on the headers."""
      return image_ops.decode_image(image_buffer, self._channels)

    def decode_raw():
      """Decodes a raw image."""
      return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)

    pred_fn_pairs = {
        math_ops.logical_or(
            math_ops.equal(image_format, 'raw'),
            math_ops.equal(image_format, 'RAW')): decode_raw,
    }
    image = control_flow_ops.case(
        pred_fn_pairs, default=decode_image, exclusive=True)

    image.set_shape([None, None, self._channels])
    if self._shape is not None:
      image = array_ops.reshape(image, self._shape)

    return image 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:tfexample_decoder.py

示例3: rot90

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, k=1, name=None):
  """Rotate an image counter-clockwise by 90 degrees.

  Args:
    image: A 3-D tensor of shape `[height, width, channels]`.
    k: A scalar integer. The number of times the image is rotated by 90 degrees.
    name: A name for this operation (optional).

  Returns:
    A rotated 3-D tensor of the same type and shape as `image`.
  """
  with ops.name_scope(name, 'rot90', [image, k]) as scope:
    image = ops.convert_to_tensor(image, name='image')
    _Check3DImage(image, require_static=False)
    k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
    k.get_shape().assert_has_rank(0)
    k = math_ops.mod(k, 4)

    def _rot90():
      return array_ops.transpose(array_ops.reverse_v2(image, [1]),
                                 [1, 0, 2])
    def _rot180():
      return array_ops.reverse_v2(image, [0, 1])
    def _rot270():
      return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
                                  [1])
    cases = [(math_ops.equal(k, 1), _rot90),
             (math_ops.equal(k, 2), _rot180),
             (math_ops.equal(k, 3), _rot270)]

    ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
                                name=scope)
    ret.set_shape([None, None, image.get_shape()[2]])
    return ret 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:36,代碼來源:image_ops_impl.py

示例4: _Encoder

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _Encoder(self, image, image_format):
    assert image_format in ['jpeg', 'JPEG', 'png', 'PNG', 'raw', 'RAW']
    if image_format in ['jpeg', 'JPEG']:
      tf_image = tf.constant(image, dtype=tf.uint8)
      return image_ops.encode_jpeg(tf_image)
    if image_format in ['png', 'PNG']:
      tf_image = tf.constant(image, dtype=tf.uint8)
      return image_ops.encode_png(tf_image)
    if image_format in ['raw', 'RAW']:
      # If machine is big endian, change the byte ordering in case of dtype
      # float32 so that it should be interpreted correctly.
      if image.dtype == np.float32 and sys.byteorder == 'big':
        image = image.astype('<f4')
      return tf.constant(image.tostring(), dtype=tf.string) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:16,代碼來源:tfexample_decoder_test.py

示例5: rot90

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, k=1, name=None):
  """Rotate an image counter-clockwise by 90 degrees.

  Args:
    image: A 3-D tensor of shape `[height, width, channels]`.
    k: A scalar integer. The number of times the image is rotated by 90 degrees.
    name: A name for this operation (optional).

  Returns:
    A rotated 3-D tensor of the same type and shape as `image`.
  """
  with ops.name_scope(name, 'rot90', [image, k]) as scope:
    image = ops.convert_to_tensor(image, name='image')
    _Check3DImage(image, require_static=False)
    k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
    k.get_shape().assert_has_rank(0)
    k = math_ops.mod(k, 4)

    def _rot90():
      return array_ops.transpose(array_ops.reverse(image, [False, True, False]),
                                 [1, 0, 2])
    def _rot180():
      return array_ops.reverse(image, [True, True, False])
    def _rot270():
      return array_ops.reverse(array_ops.transpose(image, [1, 0, 2]),
                               [False, True, False])
    cases = [(math_ops.equal(k, 1), _rot90),
             (math_ops.equal(k, 2), _rot180),
             (math_ops.equal(k, 3), _rot270)]

    ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
                                name=scope)
    ret.set_shape([None, None, image.get_shape()[2]])
    return ret 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:36,代碼來源:image_ops.py

示例6: _decode

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
    """Decodes the image buffer.

    Args:
      image_buffer: T tensor representing the encoded image tensor.
      image_format: The image format for the image in `image_buffer`.

    Returns:
      A decoder image.
    """
    def decode_png():
      return image_ops.decode_png(image_buffer, self._channels)
    def decode_raw():
      return parsing_ops.decode_raw(image_buffer, dtypes.uint8)
    def decode_jpg():
      return image_ops.decode_jpeg(image_buffer, self._channels)

    image = control_flow_ops.case({
        math_ops.logical_or(math_ops.equal(image_format, 'png'),
                            math_ops.equal(image_format, 'PNG')): decode_png,
        math_ops.logical_or(math_ops.equal(image_format, 'raw'),
                            math_ops.equal(image_format, 'RAW')): decode_raw,
    }, default=decode_jpg, exclusive=True)

    image.set_shape([None, None, self._channels])
    if self._shape is not None:
      image = array_ops.reshape(image, self._shape)

    return image 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:31,代碼來源:tfexample_decoder.py

示例7: testDecodeImageWithItemHandlerCallback

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def testDecodeImageWithItemHandlerCallback(self):
    image_shape = (2, 3, 3)
    for image_encoding in ['jpeg', 'png']:
      image, serialized_example = self.GenerateImage(
          image_format=image_encoding, image_shape=image_shape)

      with self.test_session():

        def ConditionalDecoding(keys_to_tensors):
          """See base class."""
          image_buffer = keys_to_tensors['image/encoded']
          image_format = keys_to_tensors['image/format']

          def DecodePng():
            return image_ops.decode_png(image_buffer, 3)

          def DecodeJpg():
            return image_ops.decode_jpeg(image_buffer, 3)

          image = control_flow_ops.case(
              {
                  math_ops.equal(image_format, 'png'): DecodePng,
              },
              default=DecodeJpg,
              exclusive=True)
          image = array_ops.reshape(image, image_shape)
          return image

        keys_to_features = {
            'image/encoded':
                parsing_ops.FixedLenFeature(
                    (), dtypes.string, default_value=''),
            'image/format':
                parsing_ops.FixedLenFeature(
                    (), dtypes.string, default_value='jpeg')
        }

        items_to_handlers = {
            'image':
                tfexample_decoder.ItemHandlerCallback(
                    ['image/encoded', 'image/format'], ConditionalDecoding)
        }

        decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                     items_to_handlers)
        [tf_image] = decoder.decode(serialized_example, ['image'])
        decoded_image = tf_image.eval()
        if image_encoding == 'jpeg':
          # For jenkins:
          image = image.astype(np.float32)
          decoded_image = decoded_image.astype(np.float32)
          self.assertAllClose(image, decoded_image, rtol=.5, atol=1.001)
        else:
          self.assertAllClose(image, decoded_image, atol=0) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:56,代碼來源:tfexample_decoder_test.py

示例8: _decode

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
    """Decodes the image buffer.

    Args:
      image_buffer: The tensor representing the encoded image tensor.
      image_format: The image format for the image in `image_buffer`.

    Returns:
      A tensor that represents decoded image of self._shape, or
      (?, ?, self._channels) if self._shape is not specified.
    """

    def decode_png():
      return image_ops.decode_png(image_buffer, self._channels)

    def decode_raw():
      return parsing_ops.decode_raw(image_buffer, dtypes.uint8)

    def decode_jpg():
      return image_ops.decode_jpeg(image_buffer, self._channels)

    # For RGBA images JPEG is not a valid decoder option.
    if self._channels > 3:
      pred_fn_pairs = {
          math_ops.logical_or(
              math_ops.equal(image_format, 'raw'),
              math_ops.equal(image_format, 'RAW')): decode_raw,
      }
      default_decoder = decode_png
    else:
      pred_fn_pairs = {
          math_ops.logical_or(
              math_ops.equal(image_format, 'png'),
              math_ops.equal(image_format, 'PNG')): decode_png,
          math_ops.logical_or(
              math_ops.equal(image_format, 'raw'),
              math_ops.equal(image_format, 'RAW')): decode_raw,
      }
      default_decoder = decode_jpg

    image = control_flow_ops.case(
        pred_fn_pairs, default=default_decoder, exclusive=True)

    image.set_shape([None, None, self._channels])
    if self._shape is not None:
      image = array_ops.reshape(image, self._shape)

    return image 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:50,代碼來源:tfexample_decoder.py

示例9: testDecodeImageWithItemHandlerCallback

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def testDecodeImageWithItemHandlerCallback(self):
    image_shape = (2, 3, 3)
    for image_encoding in ['jpeg', 'png']:
      image, serialized_example = self.GenerateImage(
          image_format=image_encoding, image_shape=image_shape)

      with self.cached_session():

        def ConditionalDecoding(keys_to_tensors):
          """See base class."""
          image_buffer = keys_to_tensors['image/encoded']
          image_format = keys_to_tensors['image/format']

          def DecodePng():
            return image_ops.decode_png(image_buffer, 3)

          def DecodeJpg():
            return image_ops.decode_jpeg(image_buffer, 3)

          image = control_flow_ops.case(
              {
                  math_ops.equal(image_format, 'png'): DecodePng,
              },
              default=DecodeJpg,
              exclusive=True)
          image = array_ops.reshape(image, image_shape)
          return image

        keys_to_features = {
            'image/encoded':
                parsing_ops.FixedLenFeature((), tf.string, default_value=''),
            'image/format':
                parsing_ops.FixedLenFeature((), tf.string, default_value='jpeg')
        }

        items_to_handlers = {
            'image':
                tfexample_decoder.ItemHandlerCallback(
                    ['image/encoded', 'image/format'], ConditionalDecoding)
        }

        decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                     items_to_handlers)
        [tf_image] = decoder.decode(serialized_example, ['image'])
        decoded_image = tf_image.eval()
        if image_encoding == 'jpeg':
          # For jenkins:
          image = image.astype(np.float32)
          decoded_image = decoded_image.astype(np.float32)
          self.assertAllClose(image, decoded_image, rtol=.5, atol=1.001)
        else:
          self.assertAllClose(image, decoded_image, atol=0) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:54,代碼來源:tfexample_decoder_test.py

示例10: _decode

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def _decode(self, image_buffer, image_format):
    """Decodes the image buffer.

    Args:
      image_buffer: The tensor representing the encoded image tensor.
      image_format: The image format for the image in `image_buffer`. If image
        format is `raw`, all images are expected to be in this format, otherwise
        this op can decode a mix of `jpg` and `png` formats.

    Returns:
      A tensor that represents decoded image of self._shape, or
      (?, ?, self._channels) if self._shape is not specified.
    """

    def decode_image():
      """Decodes a image based on the headers."""
      return math_ops.cast(
          image_ops.decode_image(image_buffer, channels=self._channels),
          self._dtype)

    def decode_jpeg():
      """Decodes a jpeg image with specified '_dct_method'."""
      return math_ops.cast(
          image_ops.decode_jpeg(
              image_buffer,
              channels=self._channels,
              dct_method=self._dct_method), self._dtype)

    def check_jpeg():
      """Checks if an image is jpeg."""
      # For jpeg, we directly use image_ops.decode_jpeg rather than decode_image
      # in order to feed the jpeg specify parameter 'dct_method'.
      return control_flow_ops.cond(
          image_ops.is_jpeg(image_buffer),
          decode_jpeg,
          decode_image,
          name='cond_jpeg')

    def decode_raw():
      """Decodes a raw image."""
      return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)

    pred_fn_pairs = [(math_ops.logical_or(
        math_ops.equal(image_format, 'raw'),
        math_ops.equal(image_format, 'RAW')), decode_raw)]

    image = control_flow_ops.case(
        pred_fn_pairs, default=check_jpeg, exclusive=True)

    image.set_shape([None, None, self._channels])
    if self._shape is not None:
      image = array_ops.reshape(image, self._shape)

    return image 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:56,代碼來源:tfexample_decoder.py

示例11: rot90

# 需要導入模塊: from tensorflow.python.ops import control_flow_ops [as 別名]
# 或者: from tensorflow.python.ops.control_flow_ops import case [as 別名]
def rot90(image, bboxes, k=1, name=None):
  """Rotate an image counter-clockwise by 90 degrees.

  Args:
    image: A 3-D tensor of shape `[height, width, channels]`.
    k: A scalar integer. The number of times the image is rotated by 90 degrees.
    name: A name for this operation (optional).

  Returns:
    A rotated 3-D tensor of the same type and shape as `image`.
  """
  with ops.name_scope(name, 'rot90', [image, k]) as scope:
    image = ops.convert_to_tensor(image, name='image')
    image = control_flow_ops.with_dependencies(
        _Check3DImage(image, require_static=False), image)
    k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
    k.get_shape().assert_has_rank(0)
    k = math_ops.mod(k, 4)

    def _rot_bboxes90(bboxes):
        return tf.stack([1 - bboxes[:, 3], bboxes[:, 0],
                        1 - bboxes[:, 1], bboxes[:, 2]], axis=-1)
    def _rot_bboxes180(bboxes):
        return tf.stack([1 - bboxes[:, 2], 1 - bboxes[:, 3],
                         1 - bboxes[:, 0], 1 - bboxes[:, 1]], axis=-1)
    def _rot_bboxes270(bboxes):
        return tf.stack([bboxes[:, 1], 1 - bboxes[:, 2],
                           bboxes[:, 3], 1 - bboxes[:, 0]], axis=-1)
    def _rot90():
      return array_ops.transpose(array_ops.reverse_v2(image, [1]),
                                 [1, 0, 2]), _rot_bboxes90(bboxes)
    def _rot180():
      return array_ops.reverse_v2(image, [0, 1]), _rot_bboxes180(bboxes)
    def _rot270():
      return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
                                  [1]), _rot_bboxes270(bboxes)
    cases = [(math_ops.equal(k, 1), _rot90),
             (math_ops.equal(k, 2), _rot180),
             (math_ops.equal(k, 3), _rot270)]

    ret_image, ret_bbox = control_flow_ops.case(cases, default=lambda: (image, bboxes), exclusive=True,
                                name=scope)
    ret_image.set_shape([None, None, image.get_shape()[2]])
    return ret_image, ret_bbox 
開發者ID:HiKapok,項目名稱:X-Detector,代碼行數:46,代碼來源:tf_image.py


注:本文中的tensorflow.python.ops.control_flow_ops.case方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。