本文整理匯總了Python中tensorflow.python.ops.check_ops.assert_non_negative方法的典型用法代碼示例。如果您正苦於以下問題:Python check_ops.assert_non_negative方法的具體用法?Python check_ops.assert_non_negative怎麽用?Python check_ops.assert_non_negative使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.check_ops
的用法示例。
在下文中一共展示了check_ops.assert_non_negative方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _assert_non_negative_int32_scalar
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _assert_non_negative_int32_scalar(self, x):
"""Helper which ensures that input is a non-negative, int32, scalar."""
x = ops.convert_to_tensor(x, name="x")
if x.dtype.base_dtype != dtypes.int32.base_dtype:
raise TypeError("%s.dtype=%s is not %s" % (x.name, x.dtype, dtypes.int32))
x_value_static = tensor_util.constant_value(x)
if x.get_shape().ndims is not None and x_value_static is not None:
if x.get_shape().ndims != 0:
raise ValueError("%s.ndims=%d is not 0 (scalar)" %
(x.name, x.get_shape().ndims))
if x_value_static < 0:
raise ValueError("%s.value=%d cannot be negative" %
(x.name, x_value_static))
return x
if self.validate_args:
x = control_flow_ops.with_dependencies([
check_ops.assert_rank(x, 0),
check_ops.assert_non_negative(x)], x)
return x
示例2: embed_check_nonnegative_integer_form
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def embed_check_nonnegative_integer_form(
x, name="embed_check_nonnegative_integer_form"):
"""Assert x is a non-negative tensor, and optionally of integers."""
with ops.name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
assertions = [
check_ops.assert_non_negative(
x, message="'{}' must be non-negative.".format(x.op.name)),
]
if not x.dtype.is_integer:
assertions += [
assert_integer_form(
x, message="'{}' cannot contain fractional components.".format(
x.op.name)),
]
return control_flow_ops.with_dependencies(assertions, x)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:18,代碼來源:util.py
示例3: _maybe_assert_valid_total_count
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _maybe_assert_valid_total_count(self, total_count, validate_args):
if not validate_args:
return total_count
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
total_count,
message="total_count must be non-negative."),
distribution_util.assert_integer_form(
total_count,
message="total_count cannot contain fractional values."),
], total_count)
示例4: embed_check_nonnegative_discrete
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def embed_check_nonnegative_discrete(x, check_integer=True):
"""Assert x is a non-negative tensor, and optionally of integers."""
assertions = [check_ops.assert_non_negative(
x, message="x must be non-negative.")]
if check_integer:
assertions += [assert_integer_form(
x, message="x cannot contain fractional components.")]
return control_flow_ops.with_dependencies(assertions, x)
示例5: _maybe_assert_valid_sample
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _maybe_assert_valid_sample(self, counts):
"""Check counts for proper shape, values, then return tensor version."""
if not self.validate_args:
return counts
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
counts,
message="counts must be non-negative."),
check_ops.assert_equal(
self.total_count, math_ops.reduce_sum(counts, -1),
message="counts last-dimension must sum to `self.total_count`"),
distribution_util.assert_integer_form(
counts,
message="counts cannot contain fractional components."),
], counts)
示例6: get_sample_ndims
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def get_sample_ndims(self, x, name="get_sample_ndims"):
"""Returns number of dimensions corresponding to iid draws ("sample").
Args:
x: `Tensor`.
name: Python `str`. The name to give this op.
Returns:
sample_ndims: `Tensor` (0D, `int32`).
Raises:
ValueError: if `sample_ndims` is calculated to be negative.
"""
with self._name_scope(name, values=[x]):
ndims = self.get_ndims(x, name=name)
if self._is_all_constant_helper(ndims, self.batch_ndims,
self.event_ndims):
ndims = tensor_util.constant_value(ndims)
sample_ndims = (ndims - self._batch_ndims_static -
self._event_ndims_static)
if sample_ndims < 0:
raise ValueError(
"expected batch_ndims(%d) + event_ndims(%d) <= ndims(%d)" %
(self._batch_ndims_static, self._event_ndims_static, ndims))
return ops.convert_to_tensor(sample_ndims, name="sample_ndims")
else:
with ops.name_scope(name="sample_ndims"):
sample_ndims = ndims - self.batch_ndims - self.event_ndims
if self.validate_args:
sample_ndims = control_flow_ops.with_dependencies(
[check_ops.assert_non_negative(sample_ndims)], sample_ndims)
return sample_ndims
示例7: _get_tol
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _get_tol(self, tol):
if tol is None:
return ops.convert_to_tensor(0, dtype=self.loc.dtype)
tol = ops.convert_to_tensor(tol, dtype=self.loc.dtype)
if self.validate_args:
tol = control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
tol, message="Argument 'tol' must be non-negative")
], tol)
return tol
示例8: _maybe_assert_valid_x
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _maybe_assert_valid_x(self, x):
if not self.validate_args or self.power == 0.:
return x
is_valid = check_ops.assert_non_negative(
1. + self.power * x,
message="Forward transformation input must be at least {}.".format(
-1. / self.power))
return control_flow_ops.with_dependencies([is_valid], x)
示例9: _maybe_assert_valid_total_count
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _maybe_assert_valid_total_count(self, total_count, validate_args):
if not validate_args:
return total_count
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
total_count,
message="total_count must be non-negative."),
distribution_util.assert_integer_form(
total_count,
message="total_count cannot contain fractional componentes."),
], total_count)
示例10: _check_num_rows_possibly_add_asserts
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _check_num_rows_possibly_add_asserts(self):
"""Static check of init arg `num_rows`, possibly add asserts."""
# Possibly add asserts.
if self._assert_proper_shapes:
self._num_rows = control_flow_ops.with_dependencies(
[
check_ops.assert_rank(
self._num_rows,
0,
message="Argument num_rows must be a 0-D Tensor."),
check_ops.assert_non_negative(
self._num_rows,
message="Argument num_rows must be non-negative."),
],
self._num_rows)
# Static checks.
if not self._num_rows.dtype.is_integer:
raise TypeError("Argument num_rows must be integer type. Found:"
" %s" % self._num_rows)
num_rows_static = self._num_rows_static
if num_rows_static is None:
return # Cannot do any other static checks.
if num_rows_static.ndim != 0:
raise ValueError("Argument num_rows must be a 0-D Tensor. Found:"
" %s" % num_rows_static)
if num_rows_static < 0:
raise ValueError("Argument num_rows must be non-negative. Found:"
" %s" % num_rows_static)
示例11: _check_batch_shape_possibly_add_asserts
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _check_batch_shape_possibly_add_asserts(self):
"""Static check of init arg `batch_shape`, possibly add asserts."""
if self._batch_shape_arg is None:
return
# Possibly add asserts
if self._assert_proper_shapes:
self._batch_shape_arg = control_flow_ops.with_dependencies(
[
check_ops.assert_rank(
self._batch_shape_arg,
1,
message="Argument batch_shape must be a 1-D Tensor."),
check_ops.assert_non_negative(
self._batch_shape_arg,
message="Argument batch_shape must be non-negative."),
],
self._batch_shape_arg)
# Static checks
if not self._batch_shape_arg.dtype.is_integer:
raise TypeError("Argument batch_shape must be integer type. Found:"
" %s" % self._batch_shape_arg)
if self._batch_shape_static is None:
return # Cannot do any other static checks.
if self._batch_shape_static.ndim != 1:
raise ValueError("Argument batch_shape must be a 1-D Tensor. Found:"
" %s" % self._batch_shape_static)
if np.any(self._batch_shape_static < 0):
raise ValueError("Argument batch_shape must be non-negative. Found:"
"%s" % self._batch_shape_static)
示例12: _assert_valid_sample
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _assert_valid_sample(self, counts):
"""Check counts for proper shape, values, then return tensor version."""
if not self.validate_args: return counts
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(
counts, message="counts has negative components."),
check_ops.assert_equal(
self.n, math_ops.reduce_sum(counts, reduction_indices=[-1]),
message="counts do not sum to n."),
distribution_util.assert_integer_form(
counts, message="counts have non-integer components.")
], counts)
示例13: _assert_valid_counts
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _assert_valid_counts(self, counts):
"""Check counts for proper shape, values, then return tensor version."""
counts = ops.convert_to_tensor(counts, name="counts")
if not self.validate_args:
return counts
candidate_n = math_ops.reduce_sum(counts, reduction_indices=[-1])
return control_flow_ops.with_dependencies([
check_ops.assert_non_negative(counts),
check_ops.assert_equal(
self._n, candidate_n,
message="counts do not sum to n"),
distribution_util.assert_integer_form(counts)], counts)
示例14: _assert_valid_n
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def _assert_valid_n(self, n, validate_args):
n = ops.convert_to_tensor(n, name="n")
if not validate_args:
return n
return control_flow_ops.with_dependencies(
[check_ops.assert_non_negative(n),
distribution_util.assert_integer_form(n)], n)
示例15: get_sample_ndims
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_non_negative [as 別名]
def get_sample_ndims(self, x, name="get_sample_ndims"):
"""Returns number of dimensions corresponding to iid draws ("sample").
Args:
x: `Tensor`.
name: `String`. The name to give this op.
Returns:
sample_ndims: `Tensor` (0D, `int32`).
Raises:
ValueError: if `sample_ndims` is calculated to be negative.
"""
with self._name_scope(name, values=[x]):
ndims = self.get_ndims(x, name=name)
if self._is_all_constant_helper(ndims, self.batch_ndims,
self.event_ndims):
ndims = tensor_util.constant_value(ndims)
sample_ndims = (ndims - self._batch_ndims_static -
self._event_ndims_static)
if sample_ndims < 0:
raise ValueError(
"expected batch_ndims(%d) + event_ndims(%d) <= ndims(%d)" %
(self._batch_ndims_static, self._event_ndims_static, ndims))
return ops.convert_to_tensor(sample_ndims, name="sample_ndims")
else:
with ops.name_scope(name="sample_ndims"):
sample_ndims = ndims - self.batch_ndims - self.event_ndims
if self.validate_args:
sample_ndims = control_flow_ops.with_dependencies(
[check_ops.assert_non_negative(sample_ndims)], sample_ndims)
return sample_ndims