本文整理匯總了Python中tensorflow.python.ops.check_ops.assert_integer方法的典型用法代碼示例。如果您正苦於以下問題:Python check_ops.assert_integer方法的具體用法?Python check_ops.assert_integer怎麽用?Python check_ops.assert_integer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.check_ops
的用法示例。
在下文中一共展示了check_ops.assert_integer方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_integer [as 別名]
def __init__(self, dim, dtype=dtypes.float32, validate_args=False, allow_nan_stats=True,
name="HypersphericalUniform"):
"""Initialize a batch of Hyperspherical Uniform distributions.
Args:
dim: Integer tensor, dimensionality of the distribution(s). Must
be `dim > 0`.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
Raises:
InvalidArgumentError: if `dim > 0` and `validate_args=False`.
"""
parameters = locals()
with ops.name_scope(name, values=[dim]):
with ops.control_dependencies([check_ops.assert_positive(dim),
check_ops.assert_integer(dim),
check_ops.assert_scalar(dim)] if validate_args else []):
self._dim = dim
super(HypersphericalUniform, self).__init__(
dtype=dtype,
reparameterization_type=distribution.FULLY_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
graph_parents=[],
name=name)
示例2: _verify_input
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_integer [as 別名]
def _verify_input(tensor_list, labels, probs_list):
"""Verify that batched inputs are well-formed."""
checked_probs_list = []
for probs in probs_list:
# Since number of classes shouldn't change at runtime, probalities shape
# should be fully defined.
probs.get_shape().assert_is_fully_defined()
# Probabilities must be 1D.
probs.get_shape().assert_has_rank(1)
# Probabilities must be nonnegative and sum to one.
tol = 1e-6
prob_sum = math_ops.reduce_sum(probs)
checked_probs = control_flow_ops.with_dependencies([
check_ops.assert_non_negative(probs),
check_ops.assert_less(prob_sum, 1.0 + tol),
check_ops.assert_less(1.0 - tol, prob_sum)
], probs)
checked_probs_list.append(checked_probs)
# All probabilities should be the same length.
prob_length = checked_probs_list[0].get_shape().num_elements()
for checked_prob in checked_probs_list:
if checked_prob.get_shape().num_elements() != prob_length:
raise ValueError('Probability parameters must have the same length.')
# Labels tensor should only have batch dimension.
labels.get_shape().assert_has_rank(1)
for tensor in tensor_list:
# Data tensor should have a batch dimension.
tensor_shape = tensor.get_shape().with_rank_at_least(1)
# Data and label batch dimensions must be compatible.
tensor_shape[0].assert_is_compatible_with(labels.get_shape()[0])
# Data and labels must have the same, strictly positive batch size. Since we
# can't assume we know the batch size at graph creation, add runtime checks.
labels_batch_size = array_ops.shape(labels)[0]
lbl_assert = check_ops.assert_positive(labels_batch_size)
# Make each tensor depend on its own checks.
labels = control_flow_ops.with_dependencies([lbl_assert], labels)
tensor_list = [
control_flow_ops.with_dependencies([
lbl_assert,
check_ops.assert_equal(array_ops.shape(x)[0], labels_batch_size)
], x) for x in tensor_list
]
# Label's classes must be integers 0 <= x < num_classes.
labels = control_flow_ops.with_dependencies([
check_ops.assert_integer(labels), check_ops.assert_non_negative(labels),
check_ops.assert_less(labels, math_ops.cast(prob_length, labels.dtype))
], labels)
return tensor_list, labels, checked_probs_list
示例3: _verify_input
# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_integer [as 別名]
def _verify_input(tensor_list, labels, probs_list):
"""Verify that batched inputs are well-formed."""
checked_probs_list = []
for probs in probs_list:
# Since number of classes shouldn't change at runtime, probalities shape
# should be fully defined.
probs.get_shape().assert_is_fully_defined()
# Probabilities must be 1D.
probs.get_shape().assert_has_rank(1)
# Probabilities must be nonnegative and sum to one.
tol = 1e-6
prob_sum = math_ops.reduce_sum(probs)
checked_probs = control_flow_ops.with_dependencies(
[check_ops.assert_non_negative(probs),
check_ops.assert_less(prob_sum, 1.0 + tol),
check_ops.assert_less(1.0 - tol, prob_sum)],
probs)
checked_probs_list.append(checked_probs)
# All probabilities should be the same length.
prob_length = checked_probs_list[0].get_shape().num_elements()
for checked_prob in checked_probs_list:
if checked_prob.get_shape().num_elements() != prob_length:
raise ValueError('Probability parameters must have the same length.')
# Labels tensor should only have batch dimension.
labels.get_shape().assert_has_rank(1)
for tensor in tensor_list:
# Data tensor should have a batch dimension.
tensor_shape = tensor.get_shape().with_rank_at_least(1)
# Data and label batch dimensions must be compatible.
tensor_shape[0].assert_is_compatible_with(labels.get_shape()[0])
# Data and labels must have the same, strictly positive batch size. Since we
# can't assume we know the batch size at graph creation, add runtime checks.
labels_batch_size = array_ops.shape(labels)[0]
lbl_assert = check_ops.assert_positive(labels_batch_size)
# Make each tensor depend on its own checks.
labels = control_flow_ops.with_dependencies([lbl_assert], labels)
tensor_list = [control_flow_ops.with_dependencies(
[lbl_assert,
check_ops.assert_equal(array_ops.shape(x)[0], labels_batch_size)],
x) for x in tensor_list]
# Label's classes must be integers 0 <= x < num_classes.
labels = control_flow_ops.with_dependencies(
[check_ops.assert_integer(labels),
check_ops.assert_non_negative(labels),
check_ops.assert_less(labels, math_ops.cast(prob_length, labels.dtype))],
labels)
return tensor_list, labels, checked_probs_list