當前位置: 首頁>>代碼示例>>Python>>正文


Python check_ops.assert_equal方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.check_ops.assert_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python check_ops.assert_equal方法的具體用法?Python check_ops.assert_equal怎麽用?Python check_ops.assert_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.check_ops的用法示例。


在下文中一共展示了check_ops.assert_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: assert_integer_form

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def assert_integer_form(
    x, data=None, summarize=None, message=None, name="assert_integer_form"):
  """Assert that x has integer components (or floats equal to integers).

  Args:
    x: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if round(x) != x.
  """

  message = message or "x has non-integer components"
  x = ops.convert_to_tensor(x, name="x")
  casted_x = math_ops.to_int64(x)
  return check_ops.assert_equal(
      x, math_ops.cast(math_ops.round(casted_x), x.dtype),
      data=data, summarize=summarize, message=message, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:util.py

示例2: _check_shape

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _check_shape(self, shape):
    """Check that the init arg `shape` defines a valid operator."""
    shape = ops.convert_to_tensor(shape, name="shape")
    if not self._verify_pd:
      return shape

    # Further checks are equivalent to verification that this is positive
    # definite.  Why?  Because the further checks simply check that this is a
    # square matrix, and combining the fact that this is square (and thus maps
    # a vector space R^k onto itself), with the behavior of .matmul(), this must
    # be the identity operator.
    rank = array_ops.size(shape)
    assert_matrix = check_ops.assert_less_equal(2, rank)
    with ops.control_dependencies([assert_matrix]):
      last_dim = array_ops.gather(shape, rank - 1)
      second_to_last_dim = array_ops.gather(shape, rank - 2)
      assert_square = check_ops.assert_equal(last_dim, second_to_last_dim)
      return control_flow_ops.with_dependencies([assert_matrix, assert_square],
                                                shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:operator_pd_identity.py

示例3: assert_zero_imag_part

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def assert_zero_imag_part(x, message=None, name="assert_zero_imag_part"):
  """Returns `Op` that asserts Tensor `x` has no non-zero imaginary parts.

  Args:
    x:  Numeric `Tensor`, real, integer, or complex.
    message:  A string message to prepend to failure message.
    name:  A name to give this `Op`.

  Returns:
    An `Op` that asserts `x` has no entries with modulus zero.
  """
  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    dtype = x.dtype.base_dtype

    if dtype.is_floating:
      return control_flow_ops.no_op()

    zero = ops.convert_to_tensor(0, dtype=dtype.real_dtype)
    return check_ops.assert_equal(zero, math_ops.imag(x), message=message) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:linear_operator_util.py

示例4: assert_compatible_matrix_dimensions

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def assert_compatible_matrix_dimensions(operator, x):
  """Assert that an argument to solve/matmul has proper domain dimension.

  If `operator.shape[-2:] = [M, N]`, and `x.shape[-2:] = [Q, R]`, then
  `operator.matmul(x)` is defined only if `N = Q`.  This `Op` returns an
  `Assert` that "fires" if this is not the case.  Static checks are already
  done by the base class `LinearOperator`.

  Args:
    operator:  `LinearOperator`.
    x:  `Tensor`.

  Returns:
    `Assert` `Op`.
  """
  # Static checks are done in the base class.  Only tensor asserts here.
  assert_same_dd = check_ops.assert_equal(
      array_ops.shape(x)[-2],
      operator.domain_dimension_tensor(),
      message=("Incompatible matrix dimensions.  "
               "shape[-2] of argument to be the same as this operator"))

  return assert_same_dd 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:linear_operator_util.py

示例5: assert_integer_form

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def assert_integer_form(
    x, data=None, summarize=None, message=None, name="assert_integer_form"):
  """Assert that x has integer components (or floats equal to integers).

  Args:
    x: Numeric `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if round(x) != x.
  """

  message = message or "x has non-integer components"
  x = ops.convert_to_tensor(x, name="x")
  casted_x = math_ops.to_int64(x)
  return check_ops.assert_equal(
      x, math_ops.cast(math_ops.round(casted_x), x.dtype),
      data=data, summarize=summarize, message=message, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:distribution_util.py

示例6: _check_chol

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _check_chol(self, chol):
    """Verify that `chol` is proper."""
    chol = ops.convert_to_tensor(chol, name="chol")
    if not self.verify_pd:
      return chol

    shape = array_ops.shape(chol)
    rank = array_ops.rank(chol)

    is_matrix = check_ops.assert_rank_at_least(chol, 2)
    is_square = check_ops.assert_equal(
        array_ops.gather(shape, rank - 2), array_ops.gather(shape, rank - 1))

    deps = [is_matrix, is_square]
    diag = array_ops.matrix_diag_part(chol)
    deps.append(check_ops.assert_positive(diag))

    return control_flow_ops.with_dependencies(deps, chol) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:operator_pd_cholesky.py

示例7: _check_labels

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _check_labels(labels, expected_labels_dimension):
  """Check labels type and shape."""
  with ops.name_scope(None, 'labels', (labels,)) as scope:
    labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
    if isinstance(labels, sparse_tensor.SparseTensor):
      raise ValueError('SparseTensor labels are not supported.')
    labels_shape = array_ops.shape(labels)
    err_msg = 'labels shape must be [batch_size, {}]'.format(
        expected_labels_dimension)
    assert_rank = check_ops.assert_rank(labels, 2, message=err_msg)
    with ops.control_dependencies([assert_rank]):
      static_shape = labels.shape
      if static_shape is not None:
        dim1 = static_shape[1]
        if (dim1 is not None) and (dim1 != expected_labels_dimension):
          raise ValueError(
              'Mismatched label shape. '
              'Classifier configured with n_classes=%s.  Received %s. '
              'Suggested Fix: check your n_classes argument to the estimator '
              'and/or the shape of your label.' %
              (expected_labels_dimension, dim1))
      assert_dimension = check_ops.assert_equal(
          expected_labels_dimension, labels_shape[1], message=err_msg)
      with ops.control_dependencies([assert_dimension]):
        return array_ops.identity(labels, name=scope) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:head.py

示例8: _check_logits

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _check_logits(logits, expected_logits_dimension):
  """Check logits type and shape."""
  with ops.name_scope(None, 'logits', (logits,)) as scope:
    logits = math_ops.to_float(logits)
    logits_shape = array_ops.shape(logits)
    assert_rank = check_ops.assert_rank(
        logits, 2, data=[logits_shape],
        message='logits shape must be [batch_size, logits_dimension]')
    with ops.control_dependencies([assert_rank]):
      static_shape = logits.shape
      if static_shape is not None:
        dim1 = static_shape[1]
        if (dim1 is not None) and (dim1 != expected_logits_dimension):
          raise ValueError(
              'logits shape must be [batch_size, logits_dimension], got %s.' %
              (static_shape,))
      assert_dimension = check_ops.assert_equal(
          expected_logits_dimension, logits_shape[1], data=[logits_shape],
          message='logits shape must be [batch_size, logits_dimension]')
      with ops.control_dependencies([assert_dimension]):
        return array_ops.identity(logits, name=scope) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:head.py

示例9: _maybe_assert_valid_sample

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _maybe_assert_valid_sample(self, counts):
    """Check counts for proper shape, values, then return tensor version."""
    if not self.validate_args:
      return counts

    counts = distribution_util.embed_check_nonnegative_discrete(
        counts, check_integer=True)
    return control_flow_ops.with_dependencies([
        check_ops.assert_equal(
            self.total_count, math_ops.reduce_sum(counts, -1),
            message="counts must sum to `self.total_count`"),
    ], counts) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:multinomial.py

示例10: assert_close

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def assert_close(
    x, y, data=None, summarize=None, message=None, name="assert_close"):
  """Assert that that x and y are within machine epsilon of each other.

  Args:
    x: Floating-point `Tensor`
    y: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
  """
  message = message or ""
  x = ops.convert_to_tensor(x, name="x")
  y = ops.convert_to_tensor(y, name="y")

  if data is None:
    data = [
        message,
        "Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
        y.name, y
    ]

  if x.dtype.is_integer:
    return check_ops.assert_equal(
        x, y, data=data, summarize=summarize, message=message, name=name)

  with ops.name_scope(name, "assert_close", [x, y, data]):
    tol = np.finfo(x.dtype.as_numpy_dtype).eps
    condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
    return control_flow_ops.Assert(
        condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:util.py

示例11: assert_symmetric

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def assert_symmetric(matrix):
  matrix_t = array_ops.matrix_transpose(matrix)
  return control_flow_ops.with_dependencies(
      [check_ops.assert_equal(matrix, matrix_t)], matrix) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:util.py

示例12: _maybe_assert_valid_sample

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _maybe_assert_valid_sample(self, counts):
    """Check counts for proper shape, values, then return tensor version."""
    if not self.validate_args:
      return counts
    return control_flow_ops.with_dependencies([
        check_ops.assert_non_negative(
            counts,
            message="counts must be non-negative."),
        check_ops.assert_equal(
            self.total_count, math_ops.reduce_sum(counts, -1),
            message="counts last-dimension must sum to `self.total_count`"),
        distribution_util.assert_integer_form(
            counts,
            message="counts cannot contain fractional components."),
    ], counts) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:17,代碼來源:dirichlet_multinomial.py

示例13: zero_state

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def zero_state(self, batch_size, dtype):
    with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
      if self._initial_cell_state is not None:
        cell_state = self._initial_cell_state
      else:
        cell_state = self._cell.zero_state(batch_size, dtype)
      error_message = (
          "When calling zero_state of AttentionWrapper %s: " % self._base_name +
          "Non-matching batch sizes between the memory "
          "(encoder output) and the requested batch size.  Are you using "
          "the BeamSearchDecoder?  If so, make sure your encoder output has "
          "been tiled to beam_width via tf.contrib.seq2seq.tile_batch, and "
          "the batch_size= argument passed to zero_state is "
          "batch_size * beam_width.")
      with ops.control_dependencies(
          [check_ops.assert_equal(batch_size,
                                  self._attention_mechanism.batch_size,
                                  message=error_message)]):
        cell_state = nest.map_structure(
            lambda s: array_ops.identity(s, name="checked_cell_state"),
            cell_state)
      if self._alignment_history:
        alignment_history = tensor_array_ops.TensorArray(
            dtype=dtype, size=0, dynamic_size=True)
      else:
        alignment_history = ()
      return AttentionWrapperState(
          cell_state=cell_state,
          time=array_ops.zeros([], dtype=dtypes.int32),
          attention=_zero_state_tensors(self._attention_size, batch_size,
                                        dtype),
          alignments=self._attention_mechanism.initial_alignments(
              batch_size, dtype),
          alignment_history=alignment_history) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:attention_wrapper.py

示例14: _prob

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _prob(self, x):
    if self.validate_args:
      is_vector_check = check_ops.assert_rank_at_least(x, 1)
      right_vec_space_check = check_ops.assert_equal(
          self.event_shape_tensor(),
          array_ops.gather(array_ops.shape(x), array_ops.rank(x) - 1),
          message=
          "Argument 'x' not defined in the same space R^k as this distribution")
      with ops.control_dependencies([is_vector_check]):
        with ops.control_dependencies([right_vec_space_check]):
          x = array_ops.identity(x)
    return math_ops.cast(
        math_ops.reduce_all(math_ops.abs(x - self.loc) <= self._slack, axis=-1),
        dtype=self.dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:deterministic.py

示例15: _forward_event_shape_tensor

# 需要導入模塊: from tensorflow.python.ops import check_ops [as 別名]
# 或者: from tensorflow.python.ops.check_ops import assert_equal [as 別名]
def _forward_event_shape_tensor(self, input_shape):
    ndims = array_ops.shape(input_shape)
    if self.validate_args:
      # It is not possible for a negative shape so we need only check <= 1.
      is_zero_or_one = check_ops.assert_equal(
          ndims, 0 if self._static_event_ndims == 0 else 1,
          message="event_ndims must be 0 or 1")
      ndims = control_flow_ops.with_dependencies([is_zero_or_one], ndims)
    if self._static_event_ndims == 0:
      return ops.convert_to_tensor(
          [2], dtype=dtypes.int32, name="output_shape")
    return input_shape + 1 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:softmax_centered_impl.py


注:本文中的tensorflow.python.ops.check_ops.assert_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。