當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.tile方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.tile方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.tile方法的具體用法?Python array_ops.tile怎麽用?Python array_ops.tile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.tile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _SumGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _SumGrad(op, grad):
  """Gradient for Sum."""
  # Fast path for when reducing to a scalar and ndims is known: adds only
  # Reshape and Tile ops (and possibly a Shape).
  if (op.inputs[0].get_shape().ndims is not None and
      op.inputs[1].op.type == "Const"):
    rank = op.inputs[0].get_shape().ndims
    axes = tensor_util.MakeNdarray(op.inputs[1].op.get_attr("value"))
    if np.array_equal(axes, np.arange(rank)):  # Reduce all dims.
      grad = array_ops.reshape(grad, [1] * rank)
      # If shape is not fully defined (but rank is), we use Shape.
      if op.inputs[0].get_shape().is_fully_defined():
        input_shape = op.inputs[0].get_shape().as_list()
      else:
        input_shape = array_ops.shape(op.inputs[0])
      return [array_ops.tile(grad, input_shape), None]

  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)
  return [array_ops.tile(grad, tile_scaling), None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:math_grad.py

示例2: repeat

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def repeat(x, n):
  """Repeats a 2D tensor.

  if `x` has shape (samples, dim) and `n` is `2`,
  the output will have shape `(samples, 2, dim)`.

  Arguments:
      x: Tensor or variable.
      n: Python integer, number of times to repeat.

  Returns:
      A tensor.
  """
  assert ndim(x) == 2
  x = array_ops.expand_dims(x, 1)
  pattern = array_ops.stack([1, n, 1])
  return array_ops.tile(x, pattern) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:backend.py

示例3: _lengths_to_masks

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _lengths_to_masks(lengths, max_length):
  """Creates a binary matrix that can be used to mask away padding.

  Args:
    lengths: A vector of integers representing lengths.
    max_length: An integer indicating the maximum length. All values in
      lengths should be less than max_length.
  Returns:
    masks: Masks that can be used to get rid of padding.
  """
  tiled_ranges = array_ops.tile(
      array_ops.expand_dims(math_ops.range(max_length), 0),
      [array_ops.shape(lengths)[0], 1])
  lengths = array_ops.expand_dims(lengths, 1)
  masks = math_ops.to_float(
      math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
  return masks 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:crf.py

示例4: _tile_batch

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _tile_batch(t, multiplier):
  """Core single-tensor implementation of tile_batch."""
  t = ops.convert_to_tensor(t, name="t")
  shape_t = array_ops.shape(t)
  if t.shape.ndims is None or t.shape.ndims < 1:
    raise ValueError("t must have statically known rank")
  tiling = [1] * (t.shape.ndims + 1)
  tiling[1] = multiplier
  tiled_static_batch_size = (
      t.shape[0].value * multiplier if t.shape[0].value is not None else None)
  tiled = array_ops.tile(array_ops.expand_dims(t, 1), tiling)
  tiled = array_ops.reshape(
      tiled, array_ops.concat(([shape_t[0] * multiplier], shape_t[1:]), 0))
  tiled.set_shape(
      tensor_shape.TensorShape(
          [tiled_static_batch_size]).concatenate(t.shape[1:]))
  return tiled 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:beam_search_decoder.py

示例5: _lengths_to_masks

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _lengths_to_masks(lengths, max_length):
  """Creates a binary matrix that can be used to mask away padding.

  Args:
    lengths: A vector of integers representing lengths.
    max_length: An integer indicating the maximum length. All values in
      lengths should be less than max_length.
  Returns:
    masks: Masks that can be used to get rid of padding.
  """
  tiled_ranges = array_ops.tile(
      array_ops.expand_dims(math_ops.range(max_length), 0),
      [array_ops.shape(lengths)[0], 1])
  lengths = array_ops.expand_dims(lengths, 1)
  masks = math_ops.to_float(
      math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
  return masks

# 計算標簽序列的非正則化得分 
開發者ID:koala-ai,項目名稱:tensorflow_nlp,代碼行數:21,代碼來源:crf.py

示例6: _SumGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _SumGrad(op, grad):
  """Gradient for Sum."""
  # Fast path for when reducing to a scalar and ndims is known: adds only
  # Reshape and Tile ops (and possibly a Shape).
  if (op.inputs[0].get_shape().ndims is not None and op.inputs[1].op.type ==
      "Const"):
    rank = op.inputs[0].get_shape().ndims
    axes = tensor_util.MakeNdarray(op.inputs[1].op.get_attr("value"))
    if np.array_equal(axes, np.arange(rank)):  # Reduce all dims.
      grad = array_ops.reshape(grad, [1] * rank)
      # If shape is not fully defined (but rank is), we use Shape.
      if op.inputs[0].get_shape().is_fully_defined():
        input_shape = op.inputs[0].get_shape().as_list()
      else:
        input_shape = array_ops.shape(op.inputs[0])
      return [array_ops.tile(grad, input_shape), None]

  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)
  return [array_ops.tile(grad, tile_scaling), None] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:math_grad.py

示例7: _lengths_to_masks

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _lengths_to_masks(lengths, max_length):
    """Creates a binary matrix that can be used to mask away padding.
    Args:
      lengths: A vector of integers representing lengths.
      max_length: An integer indicating the maximum length. All values in
        lengths should be less than max_length.
    Returns:
      masks: Masks that can be used to get rid of padding.
    """
    tiled_ranges = array_ops.tile(
        array_ops.expand_dims(math_ops.range(max_length), 0),
        [array_ops.shape(lengths)[0], 1])
    lengths = array_ops.expand_dims(lengths, 1)
    masks = math_ops.to_float(
        math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
    return masks 
開發者ID:adapt-sjtu,項目名稱:AMTTL,代碼行數:18,代碼來源:penalty.py

示例8: _ragged_substr

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _ragged_substr(text_input, begin, end):
  text_input_flat = None
  if ragged_tensor.is_ragged(text_input):
    text_input_flat = text_input.flat_values
  else:
    text_input_flat = text_input

  def _ragged_tile(x):
    input_text, indices = x
    multiple = math_ops.reduce_sum(indices.row_lengths())
    return array_ops.tile([input_text], [multiple])

  broadcasted_text = ragged_map_ops.map_fn(
      _ragged_tile,
      (text_input_flat, begin),
      dtype=ragged_tensor.RaggedTensorType(dtype=dtypes.string, ragged_rank=1),
      infer_shape=False,
  )
  size = math_ops.sub(
      array_ops.squeeze(end.flat_values), array_ops.squeeze(begin.flat_values))
  new_tokens = string_ops.substr_v2(broadcasted_text,
                                    array_ops.squeeze(begin.flat_values), size)
  return begin.with_flat_values(new_tokens.flat_values) 
開發者ID:tensorflow,項目名稱:text,代碼行數:25,代碼來源:bert_tokenizer_test.py

示例9: _tile_batch

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _tile_batch(t, multiplier):
  """Core single-tensor implementation of tile_batch."""
  t = ops.convert_to_tensor(t, name="t")
  shape_t = array_ops.shape(t)
  if t.shape.ndims is None or t.shape.ndims < 1:
    raise ValueError("t must have statically known rank")
  tiling = [1] * (t.shape.ndims + 1)
  tiling[1] = multiplier
  tiled_static_batch_size = (
      t.shape[0].value * multiplier if t.shape[0].value is not None else None)
  tiled = array_ops.tile(array_ops.expand_dims(t, 1), tiling)
  tiled = array_ops.reshape(tiled,
                            array_ops.concat(
                                ([shape_t[0] * multiplier], shape_t[1:]), 0))
  tiled.set_shape(
      tensor_shape.TensorShape([tiled_static_batch_size]).concatenate(
          t.shape[1:]))
  return tiled 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:20,代碼來源:rnn_beam_search_decoder.py

示例10: initialize

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def initialize(self, name=None):
        finished = array_ops.tile([False], [self._batch_size])
        return finished, self._start_inputs 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:5,代碼來源:tf_helpers.py

示例11: unit_norm

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
  """Normalizes the given input across the specified dimension to unit length.

  Note that the rank of `input` must be known.

  Args:
    inputs: A `Tensor` of arbitrary size.
    dim: The dimension along which the input is normalized.
    epsilon: A small value to add to the inputs to avoid dividing by zero.
    scope: Optional scope for variable_scope.

  Returns:
    The normalized `Tensor`.

  Raises:
    ValueError: If dim is smaller than the number of dimensions in 'inputs'.
  """
  with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
    if not inputs.get_shape():
      raise ValueError('The input rank must be known.')
    input_rank = len(inputs.get_shape().as_list())
    if dim < 0 or dim >= input_rank:
      raise ValueError('dim must be positive but smaller than the input rank.')

    lengths = math_ops.sqrt(
        epsilon + math_ops.reduce_sum(math_ops.square(inputs), dim, True))
    multiples = []
    if dim > 0:
      multiples.append(array_ops.ones([dim], dtypes.int32))
    multiples.append(
        array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1]))
    if dim < (input_rank - 1):
      multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
    multiples = array_ops.concat(multiples, 0)
    return math_ops.div(inputs, array_ops.tile(lengths, multiples)) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:37,代碼來源:layers.py

示例12: _num_relevant

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _num_relevant(labels, k):
  """Computes number of relevant values for each row in labels.

  For labels with shape [D1, ... DN, num_labels], this is the minimum of
  `num_labels` and `k`.

  Args:
    labels: `int64` `Tensor` or `SparseTensor` with shape
      [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
      target classes for the associated prediction. Commonly, N=1 and `labels`
      has shape [batch_size, num_labels].
    k: Integer, k for @k metric.

  Returns:
    Integer `Tensor` of shape [D1, ... DN], where each value is the number of
    relevant values for that row.

  Raises:
    ValueError: if inputs have invalid dtypes or values.
  """
  if k < 1:
    raise ValueError('Invalid k=%s.' % k)
  with ops.name_scope(None, 'num_relevant', (labels,)) as scope:
    # For SparseTensor, calculate separate count for each row.
    labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
    if isinstance(labels, sparse_tensor.SparseTensor):
      return math_ops.minimum(sets.set_size(labels), k, name=scope)

    # For dense Tensor, calculate scalar count based on last dimension, and
    # tile across labels shape.
    labels_shape = array_ops.shape(labels)
    labels_size = labels_shape[-1]
    num_relevant_scalar = math_ops.minimum(labels_size, k)
    return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:metrics_impl.py

示例13: grayscale_to_rgb

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def grayscale_to_rgb(images, name=None):
  """Converts one or more images from Grayscale to RGB.

  Outputs a tensor of the same `DType` and rank as `images`.  The size of the
  last dimension of the output is 3, containing the RGB value of the pixels.

  Args:
    images: The Grayscale tensor to convert. Last dimension must be size 1.
    name: A name for the operation (optional).

  Returns:
    The converted grayscale image(s).
  """
  with ops.name_scope(name, 'grayscale_to_rgb', [images]) as name:
    images = ops.convert_to_tensor(images, name='images')
    rank_1 = array_ops.expand_dims(array_ops.rank(images) - 1, 0)
    shape_list = (
        [array_ops.ones(rank_1,
                        dtype=dtypes.int32)] + [array_ops.expand_dims(3, 0)])
    multiples = array_ops.concat(shape_list, 0)
    rgb = array_ops.tile(images, multiples, name=name)
    rgb.set_shape(images.get_shape()[:-1].concatenate([3]))
    return rgb


# pylint: disable=invalid-name 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:image_ops_impl.py

示例14: _entropy

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _entropy(self):
    if not self.bijector.is_constant_jacobian:
      raise NotImplementedError("entropy is not implemented")
    # Suppose Y = g(X) where g is a diffeomorphism and X is a continuous rv. It
    # can be shown that:
    #   H[Y] = H[X] + E_X[(log o abs o det o J o g)(X)].
    # If is_constant_jacobian then:
    #   E_X[(log o abs o det o J o g)(X)] = (log o abs o det o J o g)(c)
    # where c can by anything.
    entropy = self.distribution.entropy()
    if self._is_maybe_event_override:
      # H[X] = sum_i H[X_i] if X_i are mutually independent.
      # This means that a reduce_sum is a simple rescaling.
      entropy *= math_ops.cast(math_ops.reduce_prod(self._override_event_shape),
                               dtype=entropy.dtype.base_dtype)
    if self._is_maybe_batch_override:
      new_shape = array_ops.concat([
          _ones_like(self._override_batch_shape),
          self.distribution.batch_shape_tensor()
      ], 0)
      entropy = array_ops.reshape(entropy, new_shape)
      multiples = array_ops.concat([
          self._override_batch_shape,
          _ones_like(self.distribution.batch_shape_tensor())
      ], 0)
      entropy = array_ops.tile(entropy, multiples)
    dummy = array_ops.zeros([], self.dtype)
    entropy -= self.bijector.inverse_log_det_jacobian(dummy)
    entropy.set_shape(self.batch_shape)
    return entropy 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:32,代碼來源:transformed_distribution.py

示例15: _BiasAddGradGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import tile [as 別名]
def _BiasAddGradGrad(op, received_grad):
  """Gradient for the BiasAddGrad op.

  Args:
    op: BiasAddGrad op for which we are calculating gradients.
    received_grad: The gradients passed to the BiasAddGrad op.

  Returns:
    A single gradient Tensor for the input to BiasAddGrad (which
    is the gradient of the bias term in BiasAdd)
  """

  try:
    data_format = op.get_attr("data_format")
  except ValueError:
    data_format = None

  shape = array_ops.shape(op.inputs[0])
  rank = array_ops.rank(op.inputs[0])
  bias_shape = array_ops.shape(received_grad)

  if data_format == b"NCHW":
    expanded_shape = array_ops.concat([
        array_ops.ones_like(shape[:-3]), bias_shape,
        array_ops.ones_like(shape[-2:])
    ], 0)
    tile_mults = array_ops.concat([shape[:-3], [1], shape[-2:]], 0)
  else:
    expanded_shape = array_ops.concat(
        [array_ops.ones_like(shape[:-1]), bias_shape], 0)
    tile_mults = array_ops.concat([shape[:-1], [1]], 0)

  expanded_grad = array_ops.reshape(received_grad, expanded_shape)
  return array_ops.tile(expanded_grad, tile_mults) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:nn_grad.py


注:本文中的tensorflow.python.ops.array_ops.tile方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。