本文整理匯總了Python中tensorflow.python.ops.array_ops.strided_slice方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.strided_slice方法的具體用法?Python array_ops.strided_slice怎麽用?Python array_ops.strided_slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.strided_slice方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _dense_inner_flatten
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _dense_inner_flatten(inputs, new_rank):
"""Helper function for `inner_flatten`."""
rank_assertion = check_ops.assert_rank_at_least(
inputs, new_rank, message='inputs has rank less than new_rank')
with ops.control_dependencies([rank_assertion]):
outer_dimensions = array_ops.strided_slice(
array_ops.shape(inputs), [0], [new_rank - 1])
new_shape = array_ops.concat((outer_dimensions, [-1]), 0)
reshaped = array_ops.reshape(inputs, new_shape)
# if `new_rank` is an integer, try to calculate new shape.
if isinstance(new_rank, six.integer_types):
static_shape = inputs.get_shape()
if static_shape is not None and static_shape.dims is not None:
static_shape = static_shape.as_list()
static_outer_dims = static_shape[:new_rank - 1]
static_inner_dims = static_shape[new_rank - 1:]
flattened_dimension = 1
for inner_dim in static_inner_dims:
if inner_dim is None:
flattened_dimension = None
break
flattened_dimension *= inner_dim
reshaped.set_shape(static_outer_dims + [flattened_dimension])
return reshaped
示例2: _StridedSliceGradGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _StridedSliceGradGrad(op, grad):
"""Gradient for StridedSliceGrad op."""
begin = op.inputs[1]
end = op.inputs[2]
strides = op.inputs[3]
return None, None, None, None, array_ops.strided_slice(
grad,
begin,
end,
strides,
begin_mask=op.get_attr("begin_mask"),
end_mask=op.get_attr("end_mask"),
ellipsis_mask=op.get_attr("ellipsis_mask"),
new_axis_mask=op.get_attr("new_axis_mask"),
shrink_axis_mask=op.get_attr("shrink_axis_mask"))
示例3: extract_batch_shape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def extract_batch_shape(x, num_event_dims, name="extract_batch_shape"):
"""Extract the batch shape from `x`.
Assuming `x.shape = batch_shape + event_shape`, when `event_shape` has
`num_event_dims` dimensions. This `Op` returns the batch shape `Tensor`.
Args:
x: `Tensor` with rank at least `num_event_dims`. If rank is not high enough
this `Op` will fail.
num_event_dims: `int32` scalar `Tensor`. The number of trailing dimensions
in `x` to be considered as part of `event_shape`.
name: A name to prepend to created `Ops`.
Returns:
batch_shape: `1-D` `int32` `Tensor`
"""
with ops.name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
return array_ops.strided_slice(
array_ops.shape(x), [0], [array_ops.rank(x) - num_event_dims])
示例4: _get_identity_operator
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _get_identity_operator(self, v):
"""Get an `OperatorPDIdentity` to play the role of `D` in `VDV^T`."""
with ops.name_scope("get_identity_operator", values=[v]):
if v.get_shape().is_fully_defined():
v_shape = v.get_shape().as_list()
v_batch_shape = v_shape[:-2]
r = v_shape[-1]
id_shape = v_batch_shape + [r, r]
else:
v_shape = array_ops.shape(v)
v_rank = array_ops.rank(v)
v_batch_shape = array_ops.strided_slice(v_shape, [0], [v_rank - 2])
r = array_ops.gather(v_shape, v_rank - 1) # Last dim of v
id_shape = array_ops.concat((v_batch_shape, [r, r]), 0)
return operator_pd_identity.OperatorPDIdentity(
id_shape, v.dtype, verify_pd=self._verify_pd)
示例5: batch_shape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def batch_shape(self, name="batch_shape"):
"""Shape of batches associated with this operator.
If this operator represents the batch matrix `A` with
`A.shape = [N1,...,Nn, k, k]`, the `batch_shape` is `[N1,...,Nn]`.
Args:
name: A name scope to use for ops added by this method.
Returns:
`int32` `Tensor`
"""
# Derived classes get this "for free" once .shape() is implemented.
with ops.name_scope(self.name):
with ops.name_scope(name, values=self.inputs):
return array_ops.strided_slice(self.shape(), [0], [self.rank() - 2])
示例6: _test_stridedslice
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _test_stridedslice(ip_shape, begin, end, stride, dtype,
begin_mask=0, end_mask=0, new_axis_mask=0,
shrink_axis_mask=0, ellipsis_mask=0, quantized=False):
""" One iteration of a Stridedslice """
data = np.random.uniform(size=ip_shape).astype(dtype)
data = data.astype(np.uint8) if quantized else data.astype(dtype)
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, ip_shape, name="in_data")
out = array_ops.strided_slice(in_data, begin, end, stride,
begin_mask=begin_mask,
end_mask=end_mask,
new_axis_mask=new_axis_mask,
shrink_axis_mask=shrink_axis_mask,
ellipsis_mask=ellipsis_mask)
input_range = {'in_data': (-100, 100)} if quantized else None
compare_tflite_with_tvm([data], ['in_data:0'], [in_data], [out], quantized=quantized,
input_range=input_range)
示例7: unit_norm
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
"""Normalizes the given input across the specified dimension to unit length.
Note that the rank of `input` must be known.
Args:
inputs: A `Tensor` of arbitrary size.
dim: The dimension along which the input is normalized.
epsilon: A small value to add to the inputs to avoid dividing by zero.
scope: Optional scope for variable_scope.
Returns:
The normalized `Tensor`.
Raises:
ValueError: If dim is smaller than the number of dimensions in 'inputs'.
"""
with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
if not inputs.get_shape():
raise ValueError('The input rank must be known.')
input_rank = len(inputs.get_shape().as_list())
if dim < 0 or dim >= input_rank:
raise ValueError('dim must be positive but smaller than the input rank.')
lengths = math_ops.sqrt(
epsilon + math_ops.reduce_sum(math_ops.square(inputs), dim, True))
multiples = []
if dim > 0:
multiples.append(array_ops.ones([dim], dtypes.int32))
multiples.append(
array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1]))
if dim < (input_rank - 1):
multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
multiples = array_ops.concat(multiples, 0)
return math_ops.div(inputs, array_ops.tile(lengths, multiples))
示例8: _get_diff_for_monotonic_comparison
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _get_diff_for_monotonic_comparison(x):
"""Gets the difference x[1:] - x[:-1]."""
x = array_ops.reshape(x, [-1])
if not is_numeric_tensor(x):
raise TypeError('Expected x to be numeric, instead found: %s' % x)
# If x has less than 2 elements, there is nothing to compare. So return [].
is_shorter_than_two = math_ops.less(array_ops.size(x), 2)
short_result = lambda: ops.convert_to_tensor([], dtype=x.dtype)
# With 2 or more elements, return x[1:] - x[:-1]
s_len = array_ops.shape(x) - 1
diff = lambda: array_ops.strided_slice(x, [1], [1] + s_len)- array_ops.strided_slice(x, [0], s_len)
return control_flow_ops.cond(is_shorter_than_two, short_result, diff)
示例9: tree_initialization
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def tree_initialization(self):
def _init_tree():
return state_ops.scatter_update(self.variables.tree, [0], [[-1, -1]]).op
def _nothing():
return control_flow_ops.no_op()
return control_flow_ops.cond(
math_ops.equal(
array_ops.squeeze(
array_ops.strided_slice(self.variables.tree, [0, 0], [1, 1])),
-2), _init_tree, _nothing)
示例10: unit_norm
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
"""Normalizes the given input across the specified dimension to unit length.
Note that the rank of `input` must be known.
Args:
inputs: A `Tensor` of arbitrary size.
dim: The dimension along which the input is normalized.
epsilon: A small value to add to the inputs to avoid dividing by zero.
scope: Optional scope for variable_scope.
Returns:
The normalized `Tensor`.
Raises:
ValueError: If dim is smaller than the number of dimensions in 'inputs'.
"""
with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
if not inputs.get_shape():
raise ValueError('The input rank must be known.')
input_rank = len(inputs.get_shape().as_list())
if dim < 0 or dim >= input_rank:
raise ValueError(
'dim must be positive but smaller than the input rank.')
lengths = math_ops.sqrt(epsilon + math_ops.reduce_sum(
math_ops.square(inputs), dim, True))
multiples = []
if dim > 0:
multiples.append(array_ops.ones([dim], dtypes.int32))
multiples.append(
array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1]))
if dim < (input_rank - 1):
multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
multiples = array_ops.concat(multiples, 0)
return math_ops.div(inputs, array_ops.tile(lengths, multiples))
示例11: _flip_vector_to_matrix_dynamic
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _flip_vector_to_matrix_dynamic(vec, batch_shape):
"""flip_vector_to_matrix with dynamic shapes."""
# Shapes associated with batch_shape
batch_rank = array_ops.size(batch_shape)
# Shapes associated with vec.
vec = ops.convert_to_tensor(vec, name="vec")
vec_shape = array_ops.shape(vec)
vec_rank = array_ops.rank(vec)
vec_batch_rank = vec_rank - 1
m = vec_batch_rank - batch_rank
# vec_shape_left = [M1,...,Mm] or [].
vec_shape_left = array_ops.strided_slice(vec_shape, [0], [m])
# If vec_shape_left = [], then condensed_shape = [1] since reduce_prod([]) = 1
# If vec_shape_left = [M1,...,Mm], condensed_shape = [M1*...*Mm]
condensed_shape = [math_ops.reduce_prod(vec_shape_left)]
k = array_ops.gather(vec_shape, vec_rank - 1)
new_shape = array_ops.concat((batch_shape, [k], condensed_shape), 0)
def _flip_front_dims_to_back():
# Permutation corresponding to [N1,...,Nn] + [k, M1,...,Mm]
perm = array_ops.concat((math_ops.range(m, vec_rank), math_ops.range(0, m)),
0)
return array_ops.transpose(vec, perm=perm)
x_flipped = control_flow_ops.cond(
math_ops.less(0, m),
_flip_front_dims_to_back,
lambda: array_ops.expand_dims(vec, -1))
return array_ops.reshape(x_flipped, new_shape)
示例12: _check_shapes_dynamic
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _check_shapes_dynamic(self, operator, v, diag):
"""Return (v, diag) with Assert dependencies, which check shape."""
checks = []
with ops.name_scope("check_shapes", values=[operator, v, diag]):
s_v = array_ops.shape(v)
r_op = operator.rank()
r_v = array_ops.rank(v)
if diag is not None:
s_d = array_ops.shape(diag)
r_d = array_ops.rank(diag)
# Check tensor rank.
checks.append(check_ops.assert_rank(
v, r_op, message="v is not the same rank as operator."))
if diag is not None:
checks.append(check_ops.assert_rank(
diag, r_op - 1, message="diag is not the same rank as operator."))
# Check batch shape
checks.append(check_ops.assert_equal(
operator.batch_shape(), array_ops.strided_slice(s_v, [0], [r_v - 2]),
message="v does not have same batch shape as operator."))
if diag is not None:
checks.append(check_ops.assert_equal(
operator.batch_shape(), array_ops.strided_slice(
s_d, [0], [r_d - 1]),
message="diag does not have same batch shape as operator."))
# Check event shape
checks.append(check_ops.assert_equal(
operator.vector_space_dimension(), array_ops.gather(s_v, r_v - 2),
message="v does not have same event shape as operator."))
if diag is not None:
checks.append(check_ops.assert_equal(
array_ops.gather(s_v, r_v - 1), array_ops.gather(s_d, r_d - 1),
message="diag does not have same event shape as v."))
v = control_flow_ops.with_dependencies(checks, v)
if diag is not None:
diag = control_flow_ops.with_dependencies(checks, diag)
return v, diag
示例13: _event_shape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _event_shape(self):
s = self.scale_operator_pd.shape()
return array_ops.strided_slice(s, array_ops.shape(s) - 2,
array_ops.shape(s))