當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.strided_slice方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.strided_slice方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.strided_slice方法的具體用法?Python array_ops.strided_slice怎麽用?Python array_ops.strided_slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.strided_slice方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _dense_inner_flatten

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _dense_inner_flatten(inputs, new_rank):
  """Helper function for `inner_flatten`."""
  rank_assertion = check_ops.assert_rank_at_least(
      inputs, new_rank, message='inputs has rank less than new_rank')
  with ops.control_dependencies([rank_assertion]):
    outer_dimensions = array_ops.strided_slice(
        array_ops.shape(inputs), [0], [new_rank - 1])
    new_shape = array_ops.concat((outer_dimensions, [-1]), 0)
    reshaped = array_ops.reshape(inputs, new_shape)

  # if `new_rank` is an integer, try to calculate new shape.
  if isinstance(new_rank, six.integer_types):
    static_shape = inputs.get_shape()
    if static_shape is not None and static_shape.dims is not None:
      static_shape = static_shape.as_list()
      static_outer_dims = static_shape[:new_rank - 1]
      static_inner_dims = static_shape[new_rank - 1:]
      flattened_dimension = 1
      for inner_dim in static_inner_dims:
        if inner_dim is None:
          flattened_dimension = None
          break
        flattened_dimension *= inner_dim
      reshaped.set_shape(static_outer_dims + [flattened_dimension])
  return reshaped 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:27,代碼來源:layers.py

示例2: _StridedSliceGradGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _StridedSliceGradGrad(op, grad):
  """Gradient for StridedSliceGrad op."""
  begin = op.inputs[1]
  end = op.inputs[2]
  strides = op.inputs[3]

  return None, None, None, None, array_ops.strided_slice(
      grad,
      begin,
      end,
      strides,
      begin_mask=op.get_attr("begin_mask"),
      end_mask=op.get_attr("end_mask"),
      ellipsis_mask=op.get_attr("ellipsis_mask"),
      new_axis_mask=op.get_attr("new_axis_mask"),
      shrink_axis_mask=op.get_attr("shrink_axis_mask")) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:array_grad.py

示例3: extract_batch_shape

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def extract_batch_shape(x, num_event_dims, name="extract_batch_shape"):
  """Extract the batch shape from `x`.

  Assuming `x.shape = batch_shape + event_shape`, when `event_shape` has
  `num_event_dims` dimensions.  This `Op` returns the batch shape `Tensor`.

  Args:
    x: `Tensor` with rank at least `num_event_dims`.  If rank is not high enough
      this `Op` will fail.
    num_event_dims:  `int32` scalar `Tensor`.  The number of trailing dimensions
      in `x` to be considered as part of `event_shape`.
    name:  A name to prepend to created `Ops`.

  Returns:
    batch_shape:  `1-D` `int32` `Tensor`
  """
  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    return array_ops.strided_slice(
        array_ops.shape(x), [0], [array_ops.rank(x) - num_event_dims]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:operator_pd.py

示例4: _get_identity_operator

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _get_identity_operator(self, v):
    """Get an `OperatorPDIdentity` to play the role of `D` in `VDV^T`."""
    with ops.name_scope("get_identity_operator", values=[v]):
      if v.get_shape().is_fully_defined():
        v_shape = v.get_shape().as_list()
        v_batch_shape = v_shape[:-2]
        r = v_shape[-1]
        id_shape = v_batch_shape + [r, r]
      else:
        v_shape = array_ops.shape(v)
        v_rank = array_ops.rank(v)
        v_batch_shape = array_ops.strided_slice(v_shape, [0], [v_rank - 2])
        r = array_ops.gather(v_shape, v_rank - 1)  # Last dim of v
        id_shape = array_ops.concat((v_batch_shape, [r, r]), 0)
      return operator_pd_identity.OperatorPDIdentity(
          id_shape, v.dtype, verify_pd=self._verify_pd) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:operator_pd_vdvt_update.py

示例5: batch_shape

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def batch_shape(self, name="batch_shape"):
    """Shape of batches associated with this operator.

    If this operator represents the batch matrix `A` with
    `A.shape = [N1,...,Nn, k, k]`, the `batch_shape` is `[N1,...,Nn]`.

    Args:
      name:  A name scope to use for ops added by this method.

    Returns:
      `int32` `Tensor`
    """
    # Derived classes get this "for free" once .shape() is implemented.
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=self.inputs):
        return array_ops.strided_slice(self.shape(), [0], [self.rank() - 2]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:operator_pd.py

示例6: _test_stridedslice

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _test_stridedslice(ip_shape, begin, end, stride, dtype,
                       begin_mask=0, end_mask=0, new_axis_mask=0,
                       shrink_axis_mask=0, ellipsis_mask=0, quantized=False):
    """ One iteration of a Stridedslice """
    data = np.random.uniform(size=ip_shape).astype(dtype)
    data = data.astype(np.uint8) if quantized else data.astype(dtype)
    with tf.Graph().as_default():
        in_data = tf.placeholder(dtype, ip_shape, name="in_data")
        out = array_ops.strided_slice(in_data, begin, end, stride,
                                      begin_mask=begin_mask,
                                      end_mask=end_mask,
                                      new_axis_mask=new_axis_mask,
                                      shrink_axis_mask=shrink_axis_mask,
                                      ellipsis_mask=ellipsis_mask)
        input_range = {'in_data': (-100, 100)} if quantized else None
        compare_tflite_with_tvm([data], ['in_data:0'], [in_data], [out], quantized=quantized,
                                  input_range=input_range) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:19,代碼來源:test_forward.py

示例7: unit_norm

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
  """Normalizes the given input across the specified dimension to unit length.

  Note that the rank of `input` must be known.

  Args:
    inputs: A `Tensor` of arbitrary size.
    dim: The dimension along which the input is normalized.
    epsilon: A small value to add to the inputs to avoid dividing by zero.
    scope: Optional scope for variable_scope.

  Returns:
    The normalized `Tensor`.

  Raises:
    ValueError: If dim is smaller than the number of dimensions in 'inputs'.
  """
  with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
    if not inputs.get_shape():
      raise ValueError('The input rank must be known.')
    input_rank = len(inputs.get_shape().as_list())
    if dim < 0 or dim >= input_rank:
      raise ValueError('dim must be positive but smaller than the input rank.')

    lengths = math_ops.sqrt(
        epsilon + math_ops.reduce_sum(math_ops.square(inputs), dim, True))
    multiples = []
    if dim > 0:
      multiples.append(array_ops.ones([dim], dtypes.int32))
    multiples.append(
        array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1]))
    if dim < (input_rank - 1):
      multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
    multiples = array_ops.concat(multiples, 0)
    return math_ops.div(inputs, array_ops.tile(lengths, multiples)) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:37,代碼來源:layers.py

示例8: _get_diff_for_monotonic_comparison

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _get_diff_for_monotonic_comparison(x):
  """Gets the difference x[1:] - x[:-1]."""
  x = array_ops.reshape(x, [-1])
  if not is_numeric_tensor(x):
    raise TypeError('Expected x to be numeric, instead found: %s' % x)

  # If x has less than 2 elements, there is nothing to compare.  So return [].
  is_shorter_than_two = math_ops.less(array_ops.size(x), 2)
  short_result = lambda: ops.convert_to_tensor([], dtype=x.dtype)

  # With 2 or more elements, return x[1:] - x[:-1]
  s_len = array_ops.shape(x) - 1
  diff = lambda: array_ops.strided_slice(x, [1], [1] + s_len)- array_ops.strided_slice(x, [0], s_len)
  return control_flow_ops.cond(is_shorter_than_two, short_result, diff) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:check_ops.py

示例9: tree_initialization

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def tree_initialization(self):
    def _init_tree():
      return state_ops.scatter_update(self.variables.tree, [0], [[-1, -1]]).op

    def _nothing():
      return control_flow_ops.no_op()

    return control_flow_ops.cond(
        math_ops.equal(
            array_ops.squeeze(
                array_ops.strided_slice(self.variables.tree, [0, 0], [1, 1])),
            -2), _init_tree, _nothing) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:tensor_forest.py

示例10: unit_norm

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
  """Normalizes the given input across the specified dimension to unit length.

  Note that the rank of `input` must be known.

  Args:
    inputs: A `Tensor` of arbitrary size.
    dim: The dimension along which the input is normalized.
    epsilon: A small value to add to the inputs to avoid dividing by zero.
    scope: Optional scope for variable_scope.

  Returns:
    The normalized `Tensor`.

  Raises:
    ValueError: If dim is smaller than the number of dimensions in 'inputs'.
  """
  with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
    if not inputs.get_shape():
      raise ValueError('The input rank must be known.')
    input_rank = len(inputs.get_shape().as_list())
    if dim < 0 or dim >= input_rank:
      raise ValueError(
          'dim must be positive but smaller than the input rank.')

    lengths = math_ops.sqrt(epsilon + math_ops.reduce_sum(
        math_ops.square(inputs), dim, True))
    multiples = []
    if dim > 0:
      multiples.append(array_ops.ones([dim], dtypes.int32))
    multiples.append(
        array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1]))
    if dim < (input_rank - 1):
      multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
    multiples = array_ops.concat(multiples, 0)
    return math_ops.div(inputs, array_ops.tile(lengths, multiples)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:layers.py

示例11: _flip_vector_to_matrix_dynamic

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _flip_vector_to_matrix_dynamic(vec, batch_shape):
  """flip_vector_to_matrix with dynamic shapes."""
  # Shapes associated with batch_shape
  batch_rank = array_ops.size(batch_shape)

  # Shapes associated with vec.
  vec = ops.convert_to_tensor(vec, name="vec")
  vec_shape = array_ops.shape(vec)
  vec_rank = array_ops.rank(vec)
  vec_batch_rank = vec_rank - 1

  m = vec_batch_rank - batch_rank
  # vec_shape_left = [M1,...,Mm] or [].
  vec_shape_left = array_ops.strided_slice(vec_shape, [0], [m])
  # If vec_shape_left = [], then condensed_shape = [1] since reduce_prod([]) = 1
  # If vec_shape_left = [M1,...,Mm], condensed_shape = [M1*...*Mm]
  condensed_shape = [math_ops.reduce_prod(vec_shape_left)]
  k = array_ops.gather(vec_shape, vec_rank - 1)
  new_shape = array_ops.concat((batch_shape, [k], condensed_shape), 0)

  def _flip_front_dims_to_back():
    # Permutation corresponding to [N1,...,Nn] + [k, M1,...,Mm]
    perm = array_ops.concat((math_ops.range(m, vec_rank), math_ops.range(0, m)),
                            0)
    return array_ops.transpose(vec, perm=perm)

  x_flipped = control_flow_ops.cond(
      math_ops.less(0, m),
      _flip_front_dims_to_back,
      lambda: array_ops.expand_dims(vec, -1))

  return array_ops.reshape(x_flipped, new_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:operator_pd.py

示例12: _check_shapes_dynamic

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _check_shapes_dynamic(self, operator, v, diag):
    """Return (v, diag) with Assert dependencies, which check shape."""
    checks = []
    with ops.name_scope("check_shapes", values=[operator, v, diag]):
      s_v = array_ops.shape(v)
      r_op = operator.rank()
      r_v = array_ops.rank(v)
      if diag is not None:
        s_d = array_ops.shape(diag)
        r_d = array_ops.rank(diag)

      # Check tensor rank.
      checks.append(check_ops.assert_rank(
          v, r_op, message="v is not the same rank as operator."))
      if diag is not None:
        checks.append(check_ops.assert_rank(
            diag, r_op - 1, message="diag is not the same rank as operator."))

      # Check batch shape
      checks.append(check_ops.assert_equal(
          operator.batch_shape(), array_ops.strided_slice(s_v, [0], [r_v - 2]),
          message="v does not have same batch shape as operator."))
      if diag is not None:
        checks.append(check_ops.assert_equal(
            operator.batch_shape(), array_ops.strided_slice(
                s_d, [0], [r_d - 1]),
            message="diag does not have same batch shape as operator."))

      # Check event shape
      checks.append(check_ops.assert_equal(
          operator.vector_space_dimension(), array_ops.gather(s_v, r_v - 2),
          message="v does not have same event shape as operator."))
      if diag is not None:
        checks.append(check_ops.assert_equal(
            array_ops.gather(s_v, r_v - 1), array_ops.gather(s_d, r_d - 1),
            message="diag does not have same event shape as v."))

      v = control_flow_ops.with_dependencies(checks, v)
      if diag is not None:
        diag = control_flow_ops.with_dependencies(checks, diag)
      return v, diag 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:operator_pd_vdvt_update.py

示例13: _event_shape

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import strided_slice [as 別名]
def _event_shape(self):
    s = self.scale_operator_pd.shape()
    return array_ops.strided_slice(s, array_ops.shape(s) - 2,
                                   array_ops.shape(s)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:6,代碼來源:wishart.py


注:本文中的tensorflow.python.ops.array_ops.strided_slice方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。