當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.split方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.split方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.split方法的具體用法?Python array_ops.split怎麽用?Python array_ops.split使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.split方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def call(self, inputs, state):
    """Gated recurrent unit (GRU) with nunits cells."""
    with vs.variable_scope("gates"):  # Reset gate and update gate.
      # We start with bias of 1.0 to not reset and not update.
      bias_ones = self._bias_initializer
      if self._bias_initializer is None:
        dtype = [a.dtype for a in [inputs, state]][0]
        bias_ones = init_ops.constant_initializer(1.0, dtype=dtype)
      value = math_ops.sigmoid(
          _linear([inputs, state], 2 * self._num_units, True, bias_ones,
                  self._kernel_initializer))
      r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
    with vs.variable_scope("candidate"):
      c = self._activation(
          _linear([inputs, r * state], self._num_units, True,
                  self._bias_initializer, self._kernel_initializer))
    new_h = u * state + (1 - u) * c
    return new_h, new_h 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:rnn_cell_impl.py

示例2: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def call(self, inputs, state):
    """LSTM cell with layer normalization and recurrent dropout."""
    c, h = state
    args = array_ops.concat([inputs, h], 1)
    concat = self._linear(args)

    i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
    if self._layer_norm:
      i = self._norm(i, "input")
      j = self._norm(j, "transform")
      f = self._norm(f, "forget")
      o = self._norm(o, "output")

    g = self._activation(j)
    if (not isinstance(self._keep_prob, float)) or self._keep_prob < 1:
      g = nn_ops.dropout(g, self._keep_prob, seed=self._seed)

    new_c = (c * math_ops.sigmoid(f + self._forget_bias)
             + math_ops.sigmoid(i) * g)
    if self._layer_norm:
      new_c = self._norm(new_c, "state")
    new_h = self._activation(new_c) * math_ops.sigmoid(o)

    new_state = rnn_cell_impl.LSTMStateTuple(new_c, new_h)
    return new_h, new_state 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:rnn_cell.py

示例3: set_value

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def set_value(x, value):
  """Sets the value of a variable, from a Numpy array.

  Arguments:
      x: Tensor to set to a new value.
      value: Value to set the tensor to, as a Numpy array
          (of the same shape).
  """
  value = np.asarray(value)
  tf_dtype = _convert_string_dtype(x.dtype.name.split('_')[0])
  if hasattr(x, '_assign_placeholder'):
    assign_placeholder = x._assign_placeholder
    assign_op = x._assign_op
  else:
    assign_placeholder = array_ops.placeholder(tf_dtype, shape=value.shape)
    assign_op = x.assign(assign_placeholder)
    x._assign_placeholder = assign_placeholder
    x._assign_op = assign_op
  get_session().run(assign_op, feed_dict={assign_placeholder: value}) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:backend.py

示例4: batch_set_value

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def batch_set_value(tuples):
  """Sets the values of many tensor variables at once.

  Arguments:
      tuples: a list of tuples `(tensor, value)`.
          `value` should be a Numpy array.
  """
  if tuples:
    assign_ops = []
    feed_dict = {}
    for x, value in tuples:
      value = np.asarray(value)
      tf_dtype = _convert_string_dtype(x.dtype.name.split('_')[0])
      if hasattr(x, '_assign_placeholder'):
        assign_placeholder = x._assign_placeholder
        assign_op = x._assign_op
      else:
        assign_placeholder = array_ops.placeholder(tf_dtype, shape=value.shape)
        assign_op = x.assign(assign_placeholder)
        x._assign_placeholder = assign_placeholder
        x._assign_op = assign_op
      assign_ops.append(assign_op)
      feed_dict[assign_placeholder] = value
    get_session().run(assign_ops, feed_dict=feed_dict) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:backend.py

示例5: _weighted_gini

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def _weighted_gini(self, class_counts):
    """Our split score is the Gini impurity times the number of examples.

    If c(i) denotes the i-th class count and c = sum_i c(i) then
      score = c * (1 - sum_i ( c(i) / c )^2 )
            = c - sum_i c(i)^2 / c
    Args:
      class_counts: A 2-D tensor of per-class counts, usually a slice or
        gather from variables.node_sums.

    Returns:
      A 1-D tensor of the Gini impurities for each row in the input.
    """
    smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
    sums = math_ops.reduce_sum(smoothed, 1)
    sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)

    return sums - sum_squares / sums 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:tensor_forest.py

示例6: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def __call__(self, inputs, state, scope=None):
    """Gated recurrent unit (GRU) with nunits cells."""
    with vs.variable_scope(scope or "gru_cell"):
      with vs.variable_scope("gates"):  # Reset gate and update gate.
        # We start with bias of 1.0 to not reset and not update.
        r, u = array_ops.split(
            value=_linear(
                [inputs, state], 2 * self._num_units, True, 1.0, scope=scope),
            num_or_size_splits=2,
            axis=1)
        r, u = sigmoid(r), sigmoid(u)
      with vs.variable_scope("candidate"):
        c = self._activation(_linear([inputs, r * state],
                                     self._num_units, True,
                                     scope=scope))
      new_h = u * state + (1 - u) * c
    return new_h, new_h 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:19,代碼來源:core_rnn_cell_impl.py

示例7: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def __call__(self, inputs, state, scope=None):
        """Attention GRU with nunits cells."""
        with vs.variable_scope(scope or "attention_gru_cell"):
            with vs.variable_scope("gates"):  # Reset gate and update gate.
                # We start with bias of 1.0 to not reset and not update.
                if inputs.get_shape()[-1] != self._num_units + 1:
                    raise ValueError("Input should be passed as word input concatenated with 1D attention on end axis")
                # extract input vector and attention
                inputs, g = array_ops.split(inputs,
                        num_or_size_splits=[self._num_units,1],
                        axis=1)
                r = _linear([inputs, state], self._num_units, True)
                r = sigmoid(r)
            with vs.variable_scope("candidate"):
                r = r*_linear(state, self._num_units, False)
            with vs.variable_scope("input"):
                x = _linear(inputs, self._num_units, True)
            h_hat = self._activation(r + x)

            new_h = (1 - g) * state + g * h_hat
        return new_h, new_h 
開發者ID:yyht,項目名稱:BERT,代碼行數:23,代碼來源:attention_gru_cell.py

示例8: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def __call__(self, inputs, state, scope=None):
        """Run one step of SRU."""
        with tf.variable_scope(scope or type(self).__name__):  # "SRUCell"
            with tf.variable_scope("x_hat"):
                x = linear([inputs], self._num_units, False)
            with tf.variable_scope("gates"):
                concat = tf.sigmoid(linear([inputs], 2 * self._num_units, True))
                f, r = tf.split(concat, 2, axis = 1)
            with tf.variable_scope("candidates"):
                c = self._activation(f * state + (1 - f) * x)
                # variational dropout as suggested in the paper (disabled)
                # if self._is_training and Params.dropout is not None:
                #     c = tf.nn.dropout(c, keep_prob = 1 - Params.dropout)
            # highway connection
            # Our implementation is slightly different to the paper
            # https://arxiv.org/abs/1709.02755 in a way that highway network
            # uses x_hat instead of the cell inputs. Check equation (7) from the original
            # paper for SRU.
            h = r * c + (1 - r) * x
        return h, c 
開發者ID:l11x0m7,項目名稱:Question_Answering_Models,代碼行數:22,代碼來源:GRU.py

示例9: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def __call__(self, inputs, state, k_size=3, scope=None):
    """Convolutional Long short-term memory cell (ConvLSTM)."""
    with vs.variable_scope(scope or type(self).__name__): # "ConvLSTMCell"
      if self._state_is_tuple:
        c, h = state
      else:
        c, h = array_ops.split(3, 2, state)

      # batch_size * height * width * channel
      concat = _conv([inputs, h], 4 * self._num_units, k_size, True)

      # i = input_gate, j = new_input, f = forget_gate, o = output_gate
      i, j, f, o = array_ops.split(3, 4, concat)

      new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
               self._activation(j))
      new_h = self._activation(new_c) * sigmoid(o)

      if self._state_is_tuple:
        new_state = LSTMStateTuple(new_c, new_h)
      else:
        new_state = array_ops.concat(3, [new_c, new_h])
      return new_h, new_state 
開發者ID:GuangmingZhu,項目名稱:Conv3D_BICLSTM,代碼行數:25,代碼來源:ConvLSTMCell.py

示例10: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def call(self, inputs, state):
    """forward propagation of the cell

    Args:
      inputs: a 2D `Tensor` of [batch_size x input_size] shape
      state: a `tuple` of 2D `Tensor` of [batch_size x num_units] shape
        or a `Tensor` of [batch_size x (num_units * (self.depth + 1))] shape

    Returns:
      outputs: a 2D `Tensor` of [batch_size x num_units] shape
      next_state: a `tuple` of 2D `Tensor` of [batch_size x num_units] shape
        or a `Tensor` of [batch_size x (num_units * (self.depth + 1))] shape
    """
    if not self._state_is_tuple:
      states = array_ops.split(state, self.depth + 1, axis=1)
    else:
      states = state
    hidden_state = states[0]
    cell_states = states[1:]
    outputs, next_state = self._recurrence(inputs, hidden_state, cell_states, 0)
    if self._state_is_tuple:
      next_state = tuple(next_state)
    else:
      next_state = array_ops.concat(next_state, axis=1)
    return outputs, next_state 
開發者ID:hannw,項目名稱:nlstm,代碼行數:27,代碼來源:rnn_cell.py

示例11: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def call(self, inputs, state, scope=None):
    cell, hidden = state
    new_hidden = _conv([inputs, hidden],
                       self._kernel_shape,
                       4*self._output_channels,
                       self._use_bias)
    gates = array_ops.split(value=new_hidden,
                            num_or_size_splits=4,
                            axis=self._conv_ndims+1)

    input_gate, new_input, forget_gate, output_gate = gates
    new_cell = math_ops.sigmoid(forget_gate + self._forget_bias) * cell
    new_cell += math_ops.sigmoid(input_gate) * math_ops.tanh(new_input)
    output = math_ops.tanh(new_cell) * self._activation(output_gate)

    if self._skip_connection:
      output = array_ops.concat([output, inputs], axis=-1)
    new_state = rnn_cell_impl.LSTMStateTuple(new_cell, output)
    return output, new_state 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:21,代碼來源:rnn_cell.py

示例12: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def __call__(self, inputs, state, scope=None):
    """Long short-term memory cell (LSTM)."""
    with vs.variable_scope(scope or type(self).__name__):  # "BasicLSTMCell"
      # Parameters of gates are concatenated into one multiply for efficiency.
      if self._state_is_tuple:
        c, h = state
      else:
        c, h = array_ops.split(1, 2, state)
      concat = _linear([inputs, h], 4 * self._num_units, True)

      # i = input_gate, j = new_input, f = forget_gate, o = output_gate
      i, j, f, o = array_ops.split(1, 4, concat)

      new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
               self._activation(j))
      new_h = self._activation(new_c) * sigmoid(o)

      if self._state_is_tuple:
        new_state = LSTMStateTuple(new_c, new_h)
      else:
        new_state = array_ops.concat(1, [new_c, new_h])
      return new_h, new_state 
開發者ID:Guanghan,項目名稱:ROLO,代碼行數:24,代碼來源:rnn_cell.py

示例13: testForwardBackward

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def testForwardBackward(self):

    def f(x):
      return core_layers.dense(x, self.CHANNELS // 2, use_bias=True)

    def g(x):
      return core_layers.dense(x, self.CHANNELS // 2, use_bias=True)

    x = random_ops.random_uniform(
        [self.BATCH_SIZE, self.CHANNELS], dtype=dtypes.float32)
    x1, x2 = array_ops.split(x, 2, axis=-1)

    block = rev_block_lib.RevBlock(f, g, num_layers=3)
    y1, y2 = block.forward(x1, x2)
    x1_inv, x2_inv = block.backward(y1, y2)

    with self.cached_session() as sess:
      sess.run(variables.global_variables_initializer())
      x1, x2, x1_inv, x2_inv = sess.run([x1, x2, x1_inv, x2_inv])

      self.assertAllClose(x1, x1_inv, atol=1e-5)
      self.assertAllClose(x2, x2_inv, atol=1e-5) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:24,代碼來源:rev_block_lib_test.py

示例14: testBackwardForward

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def testBackwardForward(self):

    def f(x):
      return core_layers.dense(x, self.CHANNELS // 2, use_bias=True)

    def g(x):
      return core_layers.dense(x, self.CHANNELS // 2, use_bias=True)

    y = random_ops.random_uniform(
        [self.BATCH_SIZE, self.CHANNELS], dtype=dtypes.float32)
    y1, y2 = array_ops.split(y, 2, axis=-1)

    block = rev_block_lib.RevBlock(f, g, num_layers=3)
    x1, x2 = block.backward(y1, y2)
    y1_inv, y2_inv = block.forward(x1, x2)

    with self.cached_session() as sess:
      sess.run(variables.global_variables_initializer())
      y1, y2, y1_inv, y2_inv = sess.run([y1, y2, y1_inv, y2_inv])

      self.assertAllClose(y1, y1_inv, rtol=1e-5)
      self.assertAllClose(y2, y2_inv, rtol=1e-5) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:24,代碼來源:rev_block_lib_test.py

示例15: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import split [as 別名]
def __call__(self, inputs, state, scope=None):
    """Convolutional Long short-term memory cell (ConvLSTM)."""
    with vs.variable_scope(scope or type(self).__name__): # "ConvLSTMCell"
      if self._state_is_tuple:
        c, h = state
      else:
        c, h = array_ops.split(3, 2, state)

      # batch_size * height * width * channel
      concat = _conv([inputs, h], 4 * self._num_units, self._k_size, True, initializer=self._initializer)

      # i = input_gate, j = new_input, f = forget_gate, o = output_gate
      i, j, f, o = array_ops.split(3, 4, concat)

      new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
               self._activation(j))
      new_h = self._activation(new_c) * sigmoid(o)

      if self._state_is_tuple:
        new_state = LSTMStateTuple(new_c, new_h)
      else:
        new_state = array_ops.concat(3, [new_c, new_h])
      return new_h, new_state 
開發者ID:tkuanlun350,項目名稱:Tensorflow-SegNet,代碼行數:25,代碼來源:convLSTM.py


注:本文中的tensorflow.python.ops.array_ops.split方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。