本文整理匯總了Python中tensorflow.python.ops.array_ops.sparse_placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.sparse_placeholder方法的具體用法?Python array_ops.sparse_placeholder怎麽用?Python array_ops.sparse_placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.sparse_placeholder方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_place_holder_tensors_for_base_features
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def make_place_holder_tensors_for_base_features(feature_columns):
"""Returns placeholder tensors for inference.
Args:
feature_columns: An iterable containing all the feature columns. All items
should be instances of classes derived from _FeatureColumn.
Returns:
A dict mapping feature keys to SparseTensors (sparse columns) or
placeholder Tensors (dense columns).
"""
# Get dict mapping features to FixedLenFeature or VarLenFeature values.
dict_for_parse_example = create_feature_spec_for_parsing(feature_columns)
placeholders = {}
for column_name, column_type in dict_for_parse_example.items():
if isinstance(column_type, parsing_ops.VarLenFeature):
# Sparse placeholder for sparse tensors.
placeholders[column_name] = array_ops.sparse_placeholder(
column_type.dtype, name="Placeholder_{}".format(column_name))
else:
# Simple placeholder for dense tensors.
placeholders[column_name] = array_ops.placeholder(
column_type.dtype,
shape=(None, column_type.shape[0]),
name="Placeholder_{}".format(column_name))
return placeholders
示例2: testFeedSparsePlaceholderConstantShape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def testFeedSparsePlaceholderConstantShape(self):
with session.Session() as s:
indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64)
values = np.array([1.0, 2.0]).astype(np.float32)
shape = np.array([7, 9, 2]).astype(np.int64)
sp = array_ops.sparse_placeholder(dtype=np.float32,
shape=shape,
name='placeholder1')
self.assertAllEqual(sp.shape.eval(session=s), shape)
self.assertAllEqual(tensor_util.constant_value(sp.shape), shape)
sp_indices = array_ops.identity(sp.indices)
sp_values = array_ops.identity(sp.values)
sp_shape = array_ops.identity(sp.shape)
# Feed with tuple
indices_out, values_out, shape_out = s.run(
[sp_indices, sp_values, sp_shape], {sp: (indices, values)})
self.assertAllEqual(indices_out, indices)
self.assertAllEqual(values_out, values)
self.assertAllEqual(shape_out, shape)
示例3: test_sparse_multi_rank
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def test_sparse_multi_rank(self):
wire_cast = fc.categorical_column_with_hash_bucket('wire_cast', 4)
with ops.Graph().as_default():
wire_tensor = array_ops.sparse_placeholder(dtypes.string)
wire_value = sparse_tensor.SparseTensorValue(
values=['omar', 'stringer', 'marlo', 'omar'], # hashed = [2, 0, 3, 2]
indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 1]],
dense_shape=[2, 2, 2])
features = {'wire_cast': wire_tensor}
model = linear.LinearModel([wire_cast])
predictions = model(features)
wire_cast_var, _ = model.variables
with _initialized_session() as sess:
self.assertAllClose(np.zeros((4, 1)), self.evaluate(wire_cast_var))
self.assertAllClose(
np.zeros((2, 1)),
predictions.eval(feed_dict={wire_tensor: wire_value}))
sess.run(wire_cast_var.assign([[10.], [100.], [1000.], [10000.]]))
self.assertAllClose(
[[1010.], [11000.]],
predictions.eval(feed_dict={wire_tensor: wire_value}))
示例4: placeholder
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
"""Instantiates a placeholder tensor and returns it.
Arguments:
shape: Shape of the placeholder
(integer tuple, may include `None` entries).
ndim: Number of axes of the tensor.
At least one of {`shape`, `ndim`} must be specified.
If both are specified, `shape` is used.
dtype: Placeholder type.
sparse: Boolean, whether the placeholder should have a sparse type.
name: Optional name string for the placeholder.
Returns:
Tensor instance (with Keras metadata included).
Examples:
```python
>>> from keras import backend as K
>>> input_ph = K.placeholder(shape=(2, 4, 5))
>>> input_ph
<tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32>
```
"""
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
if sparse:
x = array_ops.sparse_placeholder(dtype, shape=shape, name=name)
else:
x = array_ops.placeholder(dtype, shape=shape, name=name)
x._uses_learning_phase = False
return x
示例5: get_placeholder
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def get_placeholder(self):
if self.is_sparse:
return array_ops.sparse_placeholder(dtype=self.dtype)
return array_ops.placeholder(dtype=self.dtype,
shape=[None] + list(self.shape[1:]))
示例6: testFeedInputUnavailableInGraphConstructionOk
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def testFeedInputUnavailableInGraphConstructionOk(self):
with self.test_session(use_gpu=False) as sess:
sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32)
new_shape = np.array([3, 6, 7], dtype=np.int64)
sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape)
output = sess.run(sp_output,
feed_dict={sp_input: self._SparseTensorValue_2x5x6()})
self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0],
[0, 1, 3], [1, 1, 4],
[1, 3, 2], [1, 3, 3]])
self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33])
self.assertAllEqual(output.shape, [3, 6, 7])
示例7: testInvalidDimensionSizeInputUnavailableInGraphConstruction
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def testInvalidDimensionSizeInputUnavailableInGraphConstruction(self):
sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32)
with self.test_session(use_gpu=False) as sess:
new_shape = np.array([3, 7, 5], dtype=np.int64)
out = sparse_ops.sparse_reset_shape(sp_input, new_shape)
with self.assertRaisesOpError("x <= y did not hold element-wise"):
sess.run(out, feed_dict={sp_input: self._SparseTensorValue_2x5x6()})
示例8: testFeedSparsePlaceholder
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def testFeedSparsePlaceholder(self):
with session.Session() as s:
indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64)
values = np.array([1.0, 2.0]).astype(np.float32)
shape = np.array([7, 9, 2]).astype(np.int64)
sp = array_ops.sparse_placeholder(dtype=np.float32, name='placeholder1')
sp_indices = array_ops.identity(sp.indices)
sp_values = array_ops.identity(sp.values)
sp_shape = array_ops.identity(sp.shape)
sp2 = sparse_tensor.SparseTensor(sp_indices, sp_values, sp_shape)
# Feed with tuple
indices_out, values_out, shape_out = s.run(
[sp_indices, sp_values, sp_shape], {sp: (indices, values, shape)})
self.assertAllEqual(indices_out, indices)
self.assertAllEqual(values_out, values)
self.assertAllEqual(shape_out, shape)
# Feed with SparseTensorValue
indices_out, values_out, shape_out = s.run(
[sp_indices, sp_values, sp_shape],
{sp: sparse_tensor.SparseTensorValue(indices, values, shape)})
self.assertAllEqual(indices_out, indices)
self.assertAllEqual(values_out, values)
self.assertAllEqual(shape_out, shape)
# Feed with SparseTensorValue, fetch SparseTensorValue
sp2_out = s.run(
sp2, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)})
self.assertAllEqual(sp2_out.indices, indices)
self.assertAllEqual(sp2_out.values, values)
self.assertAllEqual(sp2_out.shape, shape)
示例9: testFeedSparsePlaceholderPartialShape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def testFeedSparsePlaceholderPartialShape(self):
with session.Session() as s:
indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64)
values = np.array([1.0, 2.0]).astype(np.float32)
shape = np.array([7, 9, 2]).astype(np.int64)
sp = array_ops.sparse_placeholder(
shape=[None, 9, 2], dtype=np.float32, name='placeholder1')
sp_indices = array_ops.identity(sp.indices)
sp_values = array_ops.identity(sp.values)
sp_shape = array_ops.identity(sp.shape)
sp2 = sparse_tensor.SparseTensor(sp_indices, sp_values, sp_shape)
# Feed with tuple
indices_out, values_out, shape_out = s.run(
[sp_indices, sp_values, sp_shape], {sp: (indices, values, shape)})
self.assertAllEqual(indices_out, indices)
self.assertAllEqual(values_out, values)
self.assertAllEqual(shape_out, shape)
# Feed with SparseTensorValue
indices_out, values_out, shape_out = s.run(
[sp_indices, sp_values, sp_shape],
{sp: sparse_tensor.SparseTensorValue(indices, values, shape)})
self.assertAllEqual(indices_out, indices)
self.assertAllEqual(values_out, values)
self.assertAllEqual(shape_out, shape)
# Feed with SparseTensorValue, fetch SparseTensorValue
sp2_out = s.run(
sp2, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)})
self.assertAllEqual(sp2_out.indices, indices)
self.assertAllEqual(sp2_out.values, values)
self.assertAllEqual(sp2_out.shape, shape)
示例10: test_with_1d_unknown_shape_sparse_tensor
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def test_with_1d_unknown_shape_sparse_tensor(self):
price = fc.numeric_column('price')
price_buckets = fc.bucketized_column(
price, boundaries=[
0.,
10.,
100.,
])
body_style = fc.categorical_column_with_vocabulary_list(
'body-style', vocabulary_list=['hardtop', 'wagon', 'sedan'])
country = fc.categorical_column_with_vocabulary_list(
'country', vocabulary_list=['US', 'JP', 'CA'])
# Provides 1-dim tensor and dense tensor.
features = {
'price': array_ops.placeholder(dtypes.float32),
'body-style': array_ops.sparse_placeholder(dtypes.string),
'country': array_ops.placeholder(dtypes.string),
}
self.assertIsNone(features['price'].shape.ndims)
self.assertIsNone(features['body-style'].get_shape().ndims)
price_data = np.array([-1., 12.])
body_style_data = sparse_tensor.SparseTensorValue(
indices=((0,), (1,)), values=('sedan', 'hardtop'), dense_shape=(2,))
country_data = np.array(['US', 'CA'])
model = linear.LinearModel([price_buckets, body_style, country])
net = model(features)
body_style_var, _, price_buckets_var, bias = model.variables
with _initialized_session() as sess:
sess.run(price_buckets_var.assign([[10.], [100.], [1000.], [10000.]]))
sess.run(body_style_var.assign([[-10.], [-100.], [-1000.]]))
sess.run(bias.assign([5.]))
self.assertAllClose([[10 - 1000 + 5.], [1000 - 10 + 5.]],
sess.run(
net,
feed_dict={
features['price']: price_data,
features['body-style']: body_style_data,
features['country']: country_data
}))
示例11: __init__
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sparse_placeholder [as 別名]
def __init__(self,
input_shape=None,
batch_size=None,
dtype=dtypes.float32,
input_tensor=None,
sparse=False,
name=None):
if context.in_eager_mode():
raise RuntimeError('InputLayer not supported in Eager mode.')
super(InputLayer, self).__init__(dtype=dtype, name=name)
self.built = True
self.sparse = sparse
self.batch_size = batch_size
if isinstance(input_shape, tensor_shape.TensorShape):
input_shape = tuple(input_shape.as_list())
if input_tensor is None:
if input_shape is not None:
batch_input_shape = (batch_size,) + tuple(input_shape)
else:
batch_input_shape = None
if sparse:
input_tensor = array_ops.sparse_placeholder(
shape=batch_input_shape,
dtype=dtype,
name=self.name)
else:
input_tensor = array_ops.placeholder(
shape=batch_input_shape,
dtype=dtype,
name=self.name)
# For compatibility with Keras API.
self.is_placeholder = True
self._batch_input_shape = batch_input_shape
else:
# For compatibility with Keras API.
self.is_placeholder = False
self._batch_input_shape = tuple(input_tensor.get_shape().as_list())
# Create an input node to add to self.outbound_node
# and set output_tensors' _keras_history.
input_tensor._keras_history = (self, 0, 0) # pylint: disable=protected-access
Node(
self,
inbound_layers=[],
node_indices=[],
tensor_indices=[],
input_tensors=[input_tensor],
output_tensors=[input_tensor])
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:54,代碼來源:base.py