本文整理匯總了Python中tensorflow.python.ops.array_ops.space_to_batch_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.space_to_batch_nd方法的具體用法?Python array_ops.space_to_batch_nd怎麽用?Python array_ops.space_to_batch_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.space_to_batch_nd方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _BatchToSpaceNDGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import space_to_batch_nd [as 別名]
def _BatchToSpaceNDGrad(op, grad):
# Its gradient is the opposite op: SpaceToBatchND.
return [array_ops.space_to_batch_nd(grad, op.inputs[1], op.inputs[2]),
None, None]
示例2: _test_space_to_batch_nd
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import space_to_batch_nd [as 別名]
def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype='int32'):
data = np.random.uniform(0, 5, size=input_shape).astype(dtype)
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=input_shape, dtype=dtype)
out = array_ops.space_to_batch_nd(in_data, block_shape, paddings)
compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out])
示例3: test_forward_space_to_batch_nd
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import space_to_batch_nd [as 別名]
def test_forward_space_to_batch_nd():
# test cases: https://www.tensorflow.org/api_docs/python/tf/space_to_batch_nd
_test_space_to_batch_nd(
input_shape=[1, 2, 2, 1],
block_shape=[2, 2],
paddings=[[0, 0], [0, 0]]
)
_test_space_to_batch_nd(
input_shape=[1, 2, 2, 3],
block_shape=[2, 2],
paddings=[[0, 0], [0, 0]]
)
_test_space_to_batch_nd(
input_shape=[1, 4, 4, 1],
block_shape=[2, 2],
paddings=[[0, 0], [0, 0]]
)
_test_space_to_batch_nd(
input_shape=[2, 2, 4, 1],
block_shape=[2, 2],
paddings=[[0, 0], [2, 0]]
)
#######################################################################
# Pooling
# -------
示例4: _with_space_to_batch_call
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import space_to_batch_nd [as 別名]
def _with_space_to_batch_call(self, inp, filter): # pylint: disable=redefined-builtin
"""Call functionality for with_space_to_batch."""
# Handle input whose shape is unknown during graph creation.
input_spatial_shape = None
input_shape = self.input_shape
spatial_dims = self.spatial_dims
if input_shape.ndims is not None:
input_shape_list = input_shape.as_list()
input_spatial_shape = [input_shape_list[i] for i in spatial_dims]
if input_spatial_shape is None or None in input_spatial_shape:
input_shape_tensor = array_ops.shape(inp)
input_spatial_shape = array_ops.stack(
[input_shape_tensor[i] for i in spatial_dims])
base_paddings = self.base_paddings
if base_paddings is None:
# base_paddings could not be computed at build time since static filter
# shape was not fully defined.
filter_shape = array_ops.shape(filter)
base_paddings = _with_space_to_batch_base_paddings(
filter_shape,
self.num_spatial_dims,
self.rate_or_const_rate)
paddings, crops = array_ops.required_space_to_batch_paddings(
input_shape=input_spatial_shape,
base_paddings=base_paddings,
block_shape=self.dilation_rate)
dilation_rate = _with_space_to_batch_adjust(self.dilation_rate, 1,
spatial_dims)
paddings = _with_space_to_batch_adjust(paddings, 0, spatial_dims)
crops = _with_space_to_batch_adjust(crops, 0, spatial_dims)
input_converted = array_ops.space_to_batch_nd(
input=inp,
block_shape=dilation_rate,
paddings=paddings)
result = self.op(input_converted, filter)
result_converted = array_ops.batch_to_space_nd(
input=result, block_shape=dilation_rate, crops=crops)
return result_converted
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:44,代碼來源:nn_ops.py