當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.slice方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.slice方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.slice方法的具體用法?Python array_ops.slice怎麽用?Python array_ops.slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.slice方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def call(self, inputs, state):
    """Run this multi-layer cell on inputs, starting from state."""
    cur_state_pos = 0
    cur_inp = inputs
    new_states = []
    for i, cell in enumerate(self._cells):
      with vs.variable_scope("cell_%d" % i):
        if self._state_is_tuple:
          if not nest.is_sequence(state):
            raise ValueError(
                "Expected state to be a tuple of length %d, but received: %s" %
                (len(self.state_size), state))
          cur_state = state[i]
        else:
          cur_state = array_ops.slice(state, [0, cur_state_pos],
                                      [-1, cell.state_size])
          cur_state_pos += cell.state_size
        cur_inp, new_state = cell(cur_inp, cur_state)
        new_states.append(new_state)

    new_states = (tuple(new_states) if self._state_is_tuple else
                  array_ops.concat(new_states, 1))

    return cur_inp, new_states 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:rnn_cell_impl.py

示例2: _flatten_outer_dims

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _flatten_outer_dims(logits):
  """Flattens logits' outer dimensions and keep its last dimension."""
  rank = array_ops.rank(logits)
  last_dim_size = array_ops.slice(
      array_ops.shape(logits), [math_ops.subtract(rank, 1)], [1])
  output = array_ops.reshape(logits, array_ops.concat([[-1], last_dim_size], 0))

  # Set output shape if known.
  shape = logits.get_shape()
  if shape is not None and shape.dims is not None:
    shape = shape.as_list()
    product = 1
    product_valid = True
    for d in shape[:-1]:
      if d is None:
        product_valid = False
        break
      else:
        product *= d
    if product_valid:
      output_shape = [product, shape[-1]]
      output.set_shape(output_shape)

  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:nn_ops.py

示例3: _MatrixSetDiagGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _MatrixSetDiagGrad(op, grad):
  """Gradient for MatrixSetDiag."""
  input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
  diag_shape = op.inputs[1].get_shape()
  batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
  matrix_shape = input_shape[-2:]
  if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
    diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
  else:
    with ops.colocate_with(grad):
      grad_shape = array_ops.shape(grad)
      grad_rank = array_ops.rank(grad)
      batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
      matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
      min_dim = math_ops.reduce_min(matrix_shape)
      diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
  grad_input = array_ops.matrix_set_diag(
      grad, array_ops.zeros(
          diag_shape, dtype=grad.dtype))
  grad_diag = array_ops.matrix_diag_part(grad)
  return (grad_input, grad_diag) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:array_grad.py

示例4: _PadGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _PadGrad(op, grad):
  """Gradient for Pad."""
  # Pad introduces values around the original tensor, so the gradient function
  # slices the original shape out of the gradient."""
  x = op.inputs[0]
  a = op.inputs[1]  # [Rank(x), 2]
  # Takes a slice of a. The 1st column. [Rank(x), 1].
  pad_before = array_ops.slice(a, [0, 0],
                               array_ops.stack([array_ops.rank(x), 1]))
  # Make it a 1-D tensor.
  begin = array_ops.reshape(pad_before, [-1])
  sizes = array_ops.shape(x)
  return array_ops.slice(grad, begin, sizes), None


# ReverseSequence is just a permutation.  The gradient permutes back. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:array_grad.py

示例5: _make_tf_features

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _make_tf_features(self, input_feat):
    """Make the frequency features.

    Args:
      input_feat: input Tensor, 2D, batch x num_units.

    Returns:
      A list of frequency features, with each element containing:
      - A 2D, batch x output_dim, Tensor representing the time-frequency feature
        for that frequency index. Here output_dim is feature_size.
    Raises:
      ValueError: if input_size cannot be inferred from static shape inference.
    """
    input_size = input_feat.get_shape().with_rank(2)[-1].value
    if input_size is None:
      raise ValueError("Cannot infer input_size from static shape inference.")
    num_feats = int((input_size - self._feature_size) / (
        self._frequency_skip)) + 1
    freq_inputs = []
    for f in range(num_feats):
      cur_input = array_ops.slice(input_feat, [0, f*self._frequency_skip],
                                  [-1, self._feature_size])
      freq_inputs.append(cur_input)
    return freq_inputs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:rnn_cell.py

示例6: _attention

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _attention(self, query, attn_states):
    conv2d = nn_ops.conv2d
    reduce_sum = math_ops.reduce_sum
    softmax = nn_ops.softmax
    tanh = math_ops.tanh

    with vs.variable_scope("attention"):
      k = vs.get_variable(
          "attn_w", [1, 1, self._attn_size, self._attn_vec_size])
      v = vs.get_variable("attn_v", [self._attn_vec_size])
      hidden = array_ops.reshape(attn_states,
                                 [-1, self._attn_length, 1, self._attn_size])
      hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
      y = _linear(query, self._attn_vec_size, True)
      y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
      s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
      a = softmax(s)
      d = reduce_sum(
          array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
      new_attns = array_ops.reshape(d, [-1, self._attn_size])
      new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
      return new_attns, new_attn_states 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:rnn_cell.py

示例7: _get_input_for_group

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _get_input_for_group(self, inputs, group_id, group_size):
    """Slices inputs into groups to prepare for processing by cell's groups

    Args:
      inputs: cell input or it's previous state,
              a Tensor, 2D, [batch x num_units]
      group_id: group id, a Scalar, for which to prepare input
      group_size: size of the group

    Returns:
      subset of inputs corresponding to group "group_id",
      a Tensor, 2D, [batch x num_units/number_of_groups]
    """
    return array_ops.slice(input_=inputs,
                           begin=[0, group_id * group_size],
                           size=[self._batch_size, group_size],
                           name=("GLSTM_group%d_input_generation" % group_id)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:rnn_cell.py

示例8: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def tensors_to_item(self, keys_to_tensors):
    indices = keys_to_tensors[self._indices_key]
    values = keys_to_tensors[self._values_key]
    if self._shape_key:
      shape = keys_to_tensors[self._shape_key]
      if isinstance(shape, sparse_tensor.SparseTensor):
        shape = sparse_ops.sparse_tensor_to_dense(shape)
    elif self._shape:
      shape = self._shape
    else:
      shape = indices.dense_shape
    indices_shape = array_ops.shape(indices.indices)
    rank = indices_shape[1]
    ids = math_ops.to_int64(indices.values)
    indices_columns_to_preserve = array_ops.slice(
        indices.indices, [0, 0], array_ops.stack([-1, rank - 1]))
    new_indices = array_ops.concat(
        [indices_columns_to_preserve, array_ops.reshape(ids, [-1, 1])], 1)

    tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape)
    if self._densify:
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    return tensor 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:tfexample_decoder.py

示例9: inference_graph

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def inference_graph(self, data):
    with ops.device(self.device_assigner):
      routing_probabilities = gen_training_ops.k_feature_routing_function(
          data,
          self.tree_parameters,
          self.tree_thresholds,
          max_nodes=self.params.num_nodes,
          num_features_per_node=self.params.num_features_per_node,
          layer_num=0,
          random_seed=self.params.base_random_seed)

      output = array_ops.slice(
          routing_probabilities,
          [0, self.params.num_nodes - self.params.num_leaves - 1],
          [-1, self.params.num_leaves])

      return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:decisions_to_data.py

示例10: soft_inference_graph

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def soft_inference_graph(self, data):
    with ops.device(self.device_assigner):
      path_probability, path = (
          gen_training_ops.stochastic_hard_routing_function(
              data,
              self.tree_parameters,
              self.tree_thresholds,
              tree_depth=self.params.hybrid_tree_depth,
              random_seed=self.params.base_random_seed))

      output = array_ops.slice(
          gen_training_ops.unpack_path(path, path_probability),
          [0, self.params.num_nodes - self.params.num_leaves - 1],
          [-1, self.params.num_leaves])

      return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:decisions_to_data.py

示例11: _gini

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _gini(self, class_counts):
    """Calculate the Gini impurity.

    If c(i) denotes the i-th class count and c = sum_i c(i) then
      score = 1 - sum_i ( c(i) / c )^2

    Args:
      class_counts: A 2-D tensor of per-class counts, usually a slice or
        gather from variables.node_sums.

    Returns:
      A 1-D tensor of the Gini impurities for each row in the input.
    """
    smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
    sums = math_ops.reduce_sum(smoothed, 1)
    sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)

    return 1.0 - sum_squares / (sums * sums) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:tensor_forest.py

示例12: _weighted_gini

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _weighted_gini(self, class_counts):
    """Our split score is the Gini impurity times the number of examples.

    If c(i) denotes the i-th class count and c = sum_i c(i) then
      score = c * (1 - sum_i ( c(i) / c )^2 )
            = c - sum_i c(i)^2 / c
    Args:
      class_counts: A 2-D tensor of per-class counts, usually a slice or
        gather from variables.node_sums.

    Returns:
      A 1-D tensor of the Gini impurities for each row in the input.
    """
    smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
    sums = math_ops.reduce_sum(smoothed, 1)
    sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)

    return sums - sum_squares / sums 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:tensor_forest.py

示例13: _variance

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _variance(self, sums, squares):
    """Calculate the variance for each row of the input tensors.

    Variance is V = E[x^2] - (E[x])^2.

    Args:
      sums: A tensor containing output sums, usually a slice from
        variables.node_sums.  Should contain the number of examples seen
        in index 0 so we can calculate expected value.
      squares: Same as sums, but sums of squares.

    Returns:
      A 1-D tensor of the variances for each row in the input.
    """
    total_count = array_ops.slice(sums, [0, 0], [-1, 1])
    e_x = sums / total_count
    e_x2 = squares / total_count

    return math_ops.reduce_sum(e_x2 - math_ops.square(e_x), 1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:tensor_forest.py

示例14: average_impurity

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def average_impurity(self):
    """Constructs a TF graph for evaluating the average leaf impurity of a tree.

    If in regression mode, this is the leaf variance. If in classification mode,
    this is the gini impurity.

    Returns:
      The last op in the graph.
    """
    children = array_ops.squeeze(array_ops.slice(
        self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1])
    is_leaf = math_ops.equal(constants.LEAF_NODE, children)
    leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf),
                                                 squeeze_dims=[1]))
    counts = array_ops.gather(self.variables.node_sums, leaves)
    gini = self._weighted_gini(counts)
    # Guard against step 1, when there often are no leaves yet.
    def impurity():
      return gini
    # Since average impurity can be used for loss, when there's no data just
    # return a big number so that loss always decreases.
    def big():
      return array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.
    return control_flow_ops.cond(math_ops.greater(
        array_ops.shape(leaves)[0], 0), impurity, big) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:tensor_forest.py

示例15: _split_logits

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _split_logits(self, logits):
    """Splits logits for heads.

    Args:
      logits: the logits tensor.

    Returns:
      A list of logits for the individual heads.
    """
    all_logits = []
    begin = 0
    for head in self._heads:
      current_logits_size = head.logits_dimension
      current_logits = array_ops.slice(logits, [0, begin],
                                       [-1, current_logits_size])
      all_logits.append(current_logits)
      begin += current_logits_size
    return all_logits 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:head.py


注:本文中的tensorflow.python.ops.array_ops.slice方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。