本文整理匯總了Python中tensorflow.python.ops.array_ops.slice方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.slice方法的具體用法?Python array_ops.slice怎麽用?Python array_ops.slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.slice方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def call(self, inputs, state):
"""Run this multi-layer cell on inputs, starting from state."""
cur_state_pos = 0
cur_inp = inputs
new_states = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("cell_%d" % i):
if self._state_is_tuple:
if not nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s" %
(len(self.state_size), state))
cur_state = state[i]
else:
cur_state = array_ops.slice(state, [0, cur_state_pos],
[-1, cell.state_size])
cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
new_states = (tuple(new_states) if self._state_is_tuple else
array_ops.concat(new_states, 1))
return cur_inp, new_states
示例2: _flatten_outer_dims
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _flatten_outer_dims(logits):
"""Flattens logits' outer dimensions and keep its last dimension."""
rank = array_ops.rank(logits)
last_dim_size = array_ops.slice(
array_ops.shape(logits), [math_ops.subtract(rank, 1)], [1])
output = array_ops.reshape(logits, array_ops.concat([[-1], last_dim_size], 0))
# Set output shape if known.
shape = logits.get_shape()
if shape is not None and shape.dims is not None:
shape = shape.as_list()
product = 1
product_valid = True
for d in shape[:-1]:
if d is None:
product_valid = False
break
else:
product *= d
if product_valid:
output_shape = [product, shape[-1]]
output.set_shape(output_shape)
return output
示例3: _MatrixSetDiagGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _MatrixSetDiagGrad(op, grad):
"""Gradient for MatrixSetDiag."""
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例4: _PadGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _PadGrad(op, grad):
"""Gradient for Pad."""
# Pad introduces values around the original tensor, so the gradient function
# slices the original shape out of the gradient."""
x = op.inputs[0]
a = op.inputs[1] # [Rank(x), 2]
# Takes a slice of a. The 1st column. [Rank(x), 1].
pad_before = array_ops.slice(a, [0, 0],
array_ops.stack([array_ops.rank(x), 1]))
# Make it a 1-D tensor.
begin = array_ops.reshape(pad_before, [-1])
sizes = array_ops.shape(x)
return array_ops.slice(grad, begin, sizes), None
# ReverseSequence is just a permutation. The gradient permutes back.
示例5: _make_tf_features
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _make_tf_features(self, input_feat):
"""Make the frequency features.
Args:
input_feat: input Tensor, 2D, batch x num_units.
Returns:
A list of frequency features, with each element containing:
- A 2D, batch x output_dim, Tensor representing the time-frequency feature
for that frequency index. Here output_dim is feature_size.
Raises:
ValueError: if input_size cannot be inferred from static shape inference.
"""
input_size = input_feat.get_shape().with_rank(2)[-1].value
if input_size is None:
raise ValueError("Cannot infer input_size from static shape inference.")
num_feats = int((input_size - self._feature_size) / (
self._frequency_skip)) + 1
freq_inputs = []
for f in range(num_feats):
cur_input = array_ops.slice(input_feat, [0, f*self._frequency_skip],
[-1, self._feature_size])
freq_inputs.append(cur_input)
return freq_inputs
示例6: _attention
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _attention(self, query, attn_states):
conv2d = nn_ops.conv2d
reduce_sum = math_ops.reduce_sum
softmax = nn_ops.softmax
tanh = math_ops.tanh
with vs.variable_scope("attention"):
k = vs.get_variable(
"attn_w", [1, 1, self._attn_size, self._attn_vec_size])
v = vs.get_variable("attn_v", [self._attn_vec_size])
hidden = array_ops.reshape(attn_states,
[-1, self._attn_length, 1, self._attn_size])
hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
y = _linear(query, self._attn_vec_size, True)
y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
a = softmax(s)
d = reduce_sum(
array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
new_attns = array_ops.reshape(d, [-1, self._attn_size])
new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
return new_attns, new_attn_states
示例7: _get_input_for_group
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _get_input_for_group(self, inputs, group_id, group_size):
"""Slices inputs into groups to prepare for processing by cell's groups
Args:
inputs: cell input or it's previous state,
a Tensor, 2D, [batch x num_units]
group_id: group id, a Scalar, for which to prepare input
group_size: size of the group
Returns:
subset of inputs corresponding to group "group_id",
a Tensor, 2D, [batch x num_units/number_of_groups]
"""
return array_ops.slice(input_=inputs,
begin=[0, group_id * group_size],
size=[self._batch_size, group_size],
name=("GLSTM_group%d_input_generation" % group_id))
示例8: tensors_to_item
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def tensors_to_item(self, keys_to_tensors):
indices = keys_to_tensors[self._indices_key]
values = keys_to_tensors[self._values_key]
if self._shape_key:
shape = keys_to_tensors[self._shape_key]
if isinstance(shape, sparse_tensor.SparseTensor):
shape = sparse_ops.sparse_tensor_to_dense(shape)
elif self._shape:
shape = self._shape
else:
shape = indices.dense_shape
indices_shape = array_ops.shape(indices.indices)
rank = indices_shape[1]
ids = math_ops.to_int64(indices.values)
indices_columns_to_preserve = array_ops.slice(
indices.indices, [0, 0], array_ops.stack([-1, rank - 1]))
new_indices = array_ops.concat(
[indices_columns_to_preserve, array_ops.reshape(ids, [-1, 1])], 1)
tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape)
if self._densify:
tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
return tensor
示例9: inference_graph
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def inference_graph(self, data):
with ops.device(self.device_assigner):
routing_probabilities = gen_training_ops.k_feature_routing_function(
data,
self.tree_parameters,
self.tree_thresholds,
max_nodes=self.params.num_nodes,
num_features_per_node=self.params.num_features_per_node,
layer_num=0,
random_seed=self.params.base_random_seed)
output = array_ops.slice(
routing_probabilities,
[0, self.params.num_nodes - self.params.num_leaves - 1],
[-1, self.params.num_leaves])
return output
示例10: soft_inference_graph
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def soft_inference_graph(self, data):
with ops.device(self.device_assigner):
path_probability, path = (
gen_training_ops.stochastic_hard_routing_function(
data,
self.tree_parameters,
self.tree_thresholds,
tree_depth=self.params.hybrid_tree_depth,
random_seed=self.params.base_random_seed))
output = array_ops.slice(
gen_training_ops.unpack_path(path, path_probability),
[0, self.params.num_nodes - self.params.num_leaves - 1],
[-1, self.params.num_leaves])
return output
示例11: _gini
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _gini(self, class_counts):
"""Calculate the Gini impurity.
If c(i) denotes the i-th class count and c = sum_i c(i) then
score = 1 - sum_i ( c(i) / c )^2
Args:
class_counts: A 2-D tensor of per-class counts, usually a slice or
gather from variables.node_sums.
Returns:
A 1-D tensor of the Gini impurities for each row in the input.
"""
smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
sums = math_ops.reduce_sum(smoothed, 1)
sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)
return 1.0 - sum_squares / (sums * sums)
示例12: _weighted_gini
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _weighted_gini(self, class_counts):
"""Our split score is the Gini impurity times the number of examples.
If c(i) denotes the i-th class count and c = sum_i c(i) then
score = c * (1 - sum_i ( c(i) / c )^2 )
= c - sum_i c(i)^2 / c
Args:
class_counts: A 2-D tensor of per-class counts, usually a slice or
gather from variables.node_sums.
Returns:
A 1-D tensor of the Gini impurities for each row in the input.
"""
smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
sums = math_ops.reduce_sum(smoothed, 1)
sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)
return sums - sum_squares / sums
示例13: _variance
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _variance(self, sums, squares):
"""Calculate the variance for each row of the input tensors.
Variance is V = E[x^2] - (E[x])^2.
Args:
sums: A tensor containing output sums, usually a slice from
variables.node_sums. Should contain the number of examples seen
in index 0 so we can calculate expected value.
squares: Same as sums, but sums of squares.
Returns:
A 1-D tensor of the variances for each row in the input.
"""
total_count = array_ops.slice(sums, [0, 0], [-1, 1])
e_x = sums / total_count
e_x2 = squares / total_count
return math_ops.reduce_sum(e_x2 - math_ops.square(e_x), 1)
示例14: average_impurity
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def average_impurity(self):
"""Constructs a TF graph for evaluating the average leaf impurity of a tree.
If in regression mode, this is the leaf variance. If in classification mode,
this is the gini impurity.
Returns:
The last op in the graph.
"""
children = array_ops.squeeze(array_ops.slice(
self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1])
is_leaf = math_ops.equal(constants.LEAF_NODE, children)
leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf),
squeeze_dims=[1]))
counts = array_ops.gather(self.variables.node_sums, leaves)
gini = self._weighted_gini(counts)
# Guard against step 1, when there often are no leaves yet.
def impurity():
return gini
# Since average impurity can be used for loss, when there's no data just
# return a big number so that loss always decreases.
def big():
return array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.
return control_flow_ops.cond(math_ops.greater(
array_ops.shape(leaves)[0], 0), impurity, big)
示例15: _split_logits
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import slice [as 別名]
def _split_logits(self, logits):
"""Splits logits for heads.
Args:
logits: the logits tensor.
Returns:
A list of logits for the individual heads.
"""
all_logits = []
begin = 0
for head in self._heads:
current_logits_size = head.logits_dimension
current_logits = array_ops.slice(logits, [0, begin],
[-1, current_logits_size])
all_logits.append(current_logits)
begin += current_logits_size
return all_logits