當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.size方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.size方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.size方法的具體用法?Python array_ops.size怎麽用?Python array_ops.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.size方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _TileGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _TileGrad(op, grad):
  """Sum reduces grad along the tiled dimensions."""
  assert isinstance(grad, ops.Tensor)
  input_shape = array_ops.shape(op.inputs[0])
  # We interleave multiples and input_shape to get split_shape,
  # reshape grad to split_shape, and reduce along all even
  # dimensions (the tiled dimensions) to get the result
  # with shape input_shape.  For example
  #   input_shape = [20, 30, 40]
  #   multiples = [2, 3, 4]
  #   split_shape = [2, 20, 3, 30, 4, 40]
  #   axes = [0, 2, 4]
  split_shape = array_ops.reshape(
      array_ops.transpose(array_ops.stack([op.inputs[1], input_shape])), [-1])
  axes = math_ops.range(0, array_ops.size(split_shape), 2)
  input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes)
  # Fix shape inference
  input_grad.set_shape(op.inputs[0].get_shape())
  return [input_grad, None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:array_grad.py

示例2: _init_clusters_random

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _init_clusters_random(self):
    """Does random initialization of clusters.

    Returns:
      Tensor of randomly initialized clusters.
    """
    num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in self._inputs])
    # Note that for mini-batch k-means, we should ensure that the batch size of
    # data used during initialization is sufficiently large to avoid duplicated
    # clusters.
    with ops.control_dependencies(
        [check_ops.assert_less_equal(self._num_clusters, num_data)]):
      indices = random_ops.random_uniform(
          array_ops.reshape(self._num_clusters, [-1]),
          minval=0,
          maxval=math_ops.cast(num_data, dtypes.int64),
          seed=self._random_seed,
          dtype=dtypes.int64)
      clusters_init = embedding_lookup(
          self._inputs, indices, partition_strategy='div')
      return clusters_init 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:clustering_ops.py

示例3: _rnn_output_size

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _rnn_output_size(self):
    size = self._cell.output_size
    if self._output_layer is None:
      return size
    else:
      # To use layer's compute_output_shape, we need to convert the
      # RNNCell's output_size entries into shapes with an unknown
      # batch size.  We then pass this through the layer's
      # compute_output_shape and read off all but the first (batch)
      # dimensions to get the output size of the rnn with the layer
      # applied to the top.
      output_shape_with_unknown_batch = nest.map_structure(
          lambda s: tensor_shape.TensorShape([None]).concatenate(s),
          size)
      layer_output_shape = self._output_layer._compute_output_shape(  # pylint: disable=protected-access
          output_shape_with_unknown_batch)
      return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:beam_search_decoder.py

示例4: _maybe_split_batch_beams

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _maybe_split_batch_beams(self, t, s):
    """Maybe splits the tensor from a batch by beams into a batch of beams.

    We do this so that we can use nest and not run into problems with shapes.

    Args:
      t: Tensor of dimension [batch_size*beam_width, s]
      s: Tensor, Python int, or TensorShape.

    Returns:
      Either a reshaped version of t with dimension
      [batch_size, beam_width, s] if t's first dimension is of size
      batch_size*beam_width or t if not.

    Raises:
      TypeError: If t is an instance of TensorArray.
      ValueError: If the rank of t is not statically known.
    """
    _check_maybe(t)
    if t.shape.ndims >= 1:
      return self._split_batch_beams(t, s)
    else:
      return t 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:beam_search_decoder.py

示例5: _check_shape

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _check_shape(self, shape):
    """Check that the init arg `shape` defines a valid operator."""
    shape = ops.convert_to_tensor(shape, name="shape")
    if not self._verify_pd:
      return shape

    # Further checks are equivalent to verification that this is positive
    # definite.  Why?  Because the further checks simply check that this is a
    # square matrix, and combining the fact that this is square (and thus maps
    # a vector space R^k onto itself), with the behavior of .matmul(), this must
    # be the identity operator.
    rank = array_ops.size(shape)
    assert_matrix = check_ops.assert_less_equal(2, rank)
    with ops.control_dependencies([assert_matrix]):
      last_dim = array_ops.gather(shape, rank - 1)
      second_to_last_dim = array_ops.gather(shape, rank - 2)
      assert_square = check_ops.assert_equal(last_dim, second_to_last_dim)
      return control_flow_ops.with_dependencies([assert_matrix, assert_square],
                                                shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:operator_pd_identity.py

示例6: tensor_rank_tensor

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def tensor_rank_tensor(self, name="tensor_rank_tensor"):
    """Rank (in the sense of tensors) of matrix corresponding to this operator.

    If this operator acts like the batch matrix `A` with
    `A.shape = [B1,...,Bb, M, N]`, then this returns `b + 2`.

    Args:
      name:  A name for this `Op.

    Returns:
      `int32` `Tensor`, determined at runtime.
    """
    # Derived classes get this "for free" once .shape() is implemented.
    with self._name_scope(name):
      if self._cached_tensor_rank_tensor is None:
        # Prefer to use statically defined shape if available.
        if self.tensor_rank is not None:
          self._cached_tensor_rank_tensor = ops.convert_to_tensor(
              self.tensor_rank)
        else:
          self._cached_tensor_rank_tensor = array_ops.size(self.shape_tensor())
      return self._cached_tensor_rank_tensor 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:linear_operator.py

示例7: _optimal_step_size

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _optimal_step_size(last_step,
                       error_ratio,
                       safety=0.9,
                       ifactor=10.0,
                       dfactor=0.2,
                       order=5,
                       name=None):
  """Calculate the optimal size for the next Runge-Kutta step."""
  with ops.name_scope(
      name, 'optimal_step_size', [last_step, error_ratio]) as scope:
    error_ratio = math_ops.cast(error_ratio, last_step.dtype)
    exponent = math_ops.cast(1 / order, last_step.dtype)
    # this looks more complex than necessary, but importantly it keeps
    # error_ratio in the numerator so we can't divide by zero:
    factor = math_ops.maximum(
        1 / ifactor,
        math_ops.minimum(error_ratio ** exponent / safety, 1 / dfactor))
    return math_ops.div(last_step, factor, name=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:odes.py

示例8: _is_shape

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _is_shape(expected_shape, actual_tensor, actual_shape=None):
  """Returns whether actual_tensor's shape is expected_shape.

  Args:
    expected_shape: Integer list defining the expected shape, or tensor of same.
    actual_tensor: Tensor to test.
    actual_shape: Shape of actual_tensor, if we already have it.
  Returns:
    New tensor.
  """
  with ops.name_scope('is_shape', values=[actual_tensor]) as scope:
    is_rank = _is_rank(array_ops.size(expected_shape), actual_tensor)
    if actual_shape is None:
      actual_shape = array_ops.shape(actual_tensor, name='actual')
    shape_equal = _all_equal(
        ops.convert_to_tensor(expected_shape, name='expected'),
        actual_shape)
    return math_ops.logical_and(is_rank, shape_equal, name=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:tensor_util.py

示例9: _scale_losses

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _scale_losses(losses, weights):
  """Computes the scaled loss.

  Args:
    losses: A `Tensor` of size [batch_size, d1, ... dN].
    weights: A `Tensor` of size [1], [batch_size] or [batch_size, d1, ... dN].
      The `losses` are reduced (tf.reduce_sum) until its dimension matches
      that of `weights` at which point the reduced `losses` are element-wise
      multiplied by `weights` and a final reduce_sum is computed on the result.
      Conceptually, this operation is equivalent to broadcasting (tiling)
      `weights` to be the same size as `losses`, performing an element-wise
      multiplication, and summing the result.

  Returns:
    A scalar tf.float32 `Tensor` whose value represents the sum of the scaled
      `losses`.
  """
  # First, compute the sum of the losses over all elements:
  start_index = max(0, weights.get_shape().ndims)
  reduction_indices = list(range(start_index, losses.get_shape().ndims))
  reduced_losses = math_ops.reduce_sum(losses,
                                       reduction_indices=reduction_indices)
  reduced_losses = math_ops.multiply(reduced_losses, weights)
  return math_ops.reduce_sum(reduced_losses) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:loss_ops.py

示例10: _maybe_select_class_id

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _maybe_select_class_id(labels, predictions_idx, selected_id=None):
  """If class ID is specified, filter all other classes.

  Args:
    labels: `int64` `Tensor` or `SparseTensor` with shape
      [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
      target classes for the associated prediction. Commonly, N=1 and `labels`
      has shape [batch_size, num_labels]. [D1, ... DN] must match
      `predictions_idx`.
    predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k]
      where N >= 1. Commonly, N=1 and `predictions_idx` has shape
      [batch size, k].
    selected_id: Int id to select.

  Returns:
    Tuple of `labels` and `predictions_idx`, possibly with classes removed.
  """
  if selected_id is None:
    return labels, predictions_idx
  return (_select_class_id(labels, selected_id),
          _select_class_id(predictions_idx, selected_id)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:23,代碼來源:metrics_impl.py

示例11: _unstack_ta

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _unstack_ta(inp):
    return tensor_array_ops.TensorArray(
        dtype=inp.dtype, size=array_ops.shape(inp)[0],
        element_shape=inp.get_shape()[1:]).unstack(inp) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:6,代碼來源:tf_helpers.py

示例12: batch_size

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def batch_size(self):
        """Batch size of tensor returned by `sample`.

        Returns a scalar int32 tensor.
        """
        raise NotImplementedError("batch_size has not been implemented") 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:8,代碼來源:tf_helpers.py

示例13: initialize

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def initialize(self, name=None):
        with ops.name_scope(name, "%sInitialize" % type(self).__name__):
            (finished, next_inputs) = self._initialize_fn()
            if self._batch_size is None:
                self._batch_size = array_ops.size(finished)
        return (finished, next_inputs) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:8,代碼來源:tf_helpers.py

示例14: sample

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def sample(self, time, outputs, state, name=None):
        """Returns `sample_id` of shape `[batch_size, vocab_size]`. If
        `straight_through` is False, this is gumbel softmax distributions over
        vocabulary with temperature `tau`. If `straight_through` is True,
        this is one-hot vectors of the greedy samples.
        """
        sample_ids = tf.nn.softmax(outputs / self._tau)
        sample_ids = GumbelSoftmax(self._tau, logits=outputs).sample()
        if self._straight_through:
            size = tf.shape(sample_ids)[-1]
            sample_ids_hard = tf.cast(
                tf.one_hot(tf.argmax(sample_ids, -1), size), sample_ids.dtype)
            sample_ids = tf.stop_gradient(sample_ids_hard - sample_ids) \
                         + sample_ids
        return sample_ids 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:17,代碼來源:rnn_decoder_helpers.py

示例15: _select_class_id

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _select_class_id(ids, selected_id):
  """Filter all but `selected_id` out of `ids`.

  Args:
    ids: `int64` `Tensor` or `SparseTensor` of IDs.
    selected_id: Int id to select.

  Returns:
    `SparseTensor` of same dimensions as `ids`. This contains only the entries
    equal to `selected_id`.
  """
  ids = sparse_tensor.convert_to_tensor_or_sparse_tensor(ids)
  if isinstance(ids, sparse_tensor.SparseTensor):
    return sparse_ops.sparse_retain(
        ids, math_ops.equal(ids.values, selected_id))

  # TODO(ptucker): Make this more efficient, maybe add a sparse version of
  # tf.equal and tf.reduce_any?

  # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1.
  ids_shape = array_ops.shape(ids, out_type=dtypes.int64)
  ids_last_dim = array_ops.size(ids_shape) - 1
  filled_selected_id_shape = math_ops.reduced_shape(
      ids_shape, array_ops.reshape(ids_last_dim, [1]))

  # Intersect `ids` with the selected ID.
  filled_selected_id = array_ops.fill(
      filled_selected_id_shape, math_ops.to_int64(selected_id))
  result = sets.set_intersection(filled_selected_id, ids)
  return sparse_tensor.SparseTensor(
      indices=result.indices, values=result.values, dense_shape=ids_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:metrics_impl.py


注:本文中的tensorflow.python.ops.array_ops.size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。