本文整理匯總了Python中tensorflow.python.ops.array_ops.size方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.size方法的具體用法?Python array_ops.size怎麽用?Python array_ops.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.size方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _TileGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _TileGrad(op, grad):
"""Sum reduces grad along the tiled dimensions."""
assert isinstance(grad, ops.Tensor)
input_shape = array_ops.shape(op.inputs[0])
# We interleave multiples and input_shape to get split_shape,
# reshape grad to split_shape, and reduce along all even
# dimensions (the tiled dimensions) to get the result
# with shape input_shape. For example
# input_shape = [20, 30, 40]
# multiples = [2, 3, 4]
# split_shape = [2, 20, 3, 30, 4, 40]
# axes = [0, 2, 4]
split_shape = array_ops.reshape(
array_ops.transpose(array_ops.stack([op.inputs[1], input_shape])), [-1])
axes = math_ops.range(0, array_ops.size(split_shape), 2)
input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes)
# Fix shape inference
input_grad.set_shape(op.inputs[0].get_shape())
return [input_grad, None]
示例2: _init_clusters_random
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _init_clusters_random(self):
"""Does random initialization of clusters.
Returns:
Tensor of randomly initialized clusters.
"""
num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in self._inputs])
# Note that for mini-batch k-means, we should ensure that the batch size of
# data used during initialization is sufficiently large to avoid duplicated
# clusters.
with ops.control_dependencies(
[check_ops.assert_less_equal(self._num_clusters, num_data)]):
indices = random_ops.random_uniform(
array_ops.reshape(self._num_clusters, [-1]),
minval=0,
maxval=math_ops.cast(num_data, dtypes.int64),
seed=self._random_seed,
dtype=dtypes.int64)
clusters_init = embedding_lookup(
self._inputs, indices, partition_strategy='div')
return clusters_init
示例3: _rnn_output_size
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _rnn_output_size(self):
size = self._cell.output_size
if self._output_layer is None:
return size
else:
# To use layer's compute_output_shape, we need to convert the
# RNNCell's output_size entries into shapes with an unknown
# batch size. We then pass this through the layer's
# compute_output_shape and read off all but the first (batch)
# dimensions to get the output size of the rnn with the layer
# applied to the top.
output_shape_with_unknown_batch = nest.map_structure(
lambda s: tensor_shape.TensorShape([None]).concatenate(s),
size)
layer_output_shape = self._output_layer._compute_output_shape( # pylint: disable=protected-access
output_shape_with_unknown_batch)
return nest.map_structure(lambda s: s[1:], layer_output_shape)
示例4: _maybe_split_batch_beams
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _maybe_split_batch_beams(self, t, s):
"""Maybe splits the tensor from a batch by beams into a batch of beams.
We do this so that we can use nest and not run into problems with shapes.
Args:
t: Tensor of dimension [batch_size*beam_width, s]
s: Tensor, Python int, or TensorShape.
Returns:
Either a reshaped version of t with dimension
[batch_size, beam_width, s] if t's first dimension is of size
batch_size*beam_width or t if not.
Raises:
TypeError: If t is an instance of TensorArray.
ValueError: If the rank of t is not statically known.
"""
_check_maybe(t)
if t.shape.ndims >= 1:
return self._split_batch_beams(t, s)
else:
return t
示例5: _check_shape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _check_shape(self, shape):
"""Check that the init arg `shape` defines a valid operator."""
shape = ops.convert_to_tensor(shape, name="shape")
if not self._verify_pd:
return shape
# Further checks are equivalent to verification that this is positive
# definite. Why? Because the further checks simply check that this is a
# square matrix, and combining the fact that this is square (and thus maps
# a vector space R^k onto itself), with the behavior of .matmul(), this must
# be the identity operator.
rank = array_ops.size(shape)
assert_matrix = check_ops.assert_less_equal(2, rank)
with ops.control_dependencies([assert_matrix]):
last_dim = array_ops.gather(shape, rank - 1)
second_to_last_dim = array_ops.gather(shape, rank - 2)
assert_square = check_ops.assert_equal(last_dim, second_to_last_dim)
return control_flow_ops.with_dependencies([assert_matrix, assert_square],
shape)
示例6: tensor_rank_tensor
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def tensor_rank_tensor(self, name="tensor_rank_tensor"):
"""Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `b + 2`.
Args:
name: A name for this `Op.
Returns:
`int32` `Tensor`, determined at runtime.
"""
# Derived classes get this "for free" once .shape() is implemented.
with self._name_scope(name):
if self._cached_tensor_rank_tensor is None:
# Prefer to use statically defined shape if available.
if self.tensor_rank is not None:
self._cached_tensor_rank_tensor = ops.convert_to_tensor(
self.tensor_rank)
else:
self._cached_tensor_rank_tensor = array_ops.size(self.shape_tensor())
return self._cached_tensor_rank_tensor
示例7: _optimal_step_size
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _optimal_step_size(last_step,
error_ratio,
safety=0.9,
ifactor=10.0,
dfactor=0.2,
order=5,
name=None):
"""Calculate the optimal size for the next Runge-Kutta step."""
with ops.name_scope(
name, 'optimal_step_size', [last_step, error_ratio]) as scope:
error_ratio = math_ops.cast(error_ratio, last_step.dtype)
exponent = math_ops.cast(1 / order, last_step.dtype)
# this looks more complex than necessary, but importantly it keeps
# error_ratio in the numerator so we can't divide by zero:
factor = math_ops.maximum(
1 / ifactor,
math_ops.minimum(error_ratio ** exponent / safety, 1 / dfactor))
return math_ops.div(last_step, factor, name=scope)
示例8: _is_shape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _is_shape(expected_shape, actual_tensor, actual_shape=None):
"""Returns whether actual_tensor's shape is expected_shape.
Args:
expected_shape: Integer list defining the expected shape, or tensor of same.
actual_tensor: Tensor to test.
actual_shape: Shape of actual_tensor, if we already have it.
Returns:
New tensor.
"""
with ops.name_scope('is_shape', values=[actual_tensor]) as scope:
is_rank = _is_rank(array_ops.size(expected_shape), actual_tensor)
if actual_shape is None:
actual_shape = array_ops.shape(actual_tensor, name='actual')
shape_equal = _all_equal(
ops.convert_to_tensor(expected_shape, name='expected'),
actual_shape)
return math_ops.logical_and(is_rank, shape_equal, name=scope)
示例9: _scale_losses
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _scale_losses(losses, weights):
"""Computes the scaled loss.
Args:
losses: A `Tensor` of size [batch_size, d1, ... dN].
weights: A `Tensor` of size [1], [batch_size] or [batch_size, d1, ... dN].
The `losses` are reduced (tf.reduce_sum) until its dimension matches
that of `weights` at which point the reduced `losses` are element-wise
multiplied by `weights` and a final reduce_sum is computed on the result.
Conceptually, this operation is equivalent to broadcasting (tiling)
`weights` to be the same size as `losses`, performing an element-wise
multiplication, and summing the result.
Returns:
A scalar tf.float32 `Tensor` whose value represents the sum of the scaled
`losses`.
"""
# First, compute the sum of the losses over all elements:
start_index = max(0, weights.get_shape().ndims)
reduction_indices = list(range(start_index, losses.get_shape().ndims))
reduced_losses = math_ops.reduce_sum(losses,
reduction_indices=reduction_indices)
reduced_losses = math_ops.multiply(reduced_losses, weights)
return math_ops.reduce_sum(reduced_losses)
示例10: _maybe_select_class_id
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _maybe_select_class_id(labels, predictions_idx, selected_id=None):
"""If class ID is specified, filter all other classes.
Args:
labels: `int64` `Tensor` or `SparseTensor` with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and `labels`
has shape [batch_size, num_labels]. [D1, ... DN] must match
`predictions_idx`.
predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k]
where N >= 1. Commonly, N=1 and `predictions_idx` has shape
[batch size, k].
selected_id: Int id to select.
Returns:
Tuple of `labels` and `predictions_idx`, possibly with classes removed.
"""
if selected_id is None:
return labels, predictions_idx
return (_select_class_id(labels, selected_id),
_select_class_id(predictions_idx, selected_id))
示例11: _unstack_ta
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _unstack_ta(inp):
return tensor_array_ops.TensorArray(
dtype=inp.dtype, size=array_ops.shape(inp)[0],
element_shape=inp.get_shape()[1:]).unstack(inp)
示例12: batch_size
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def batch_size(self):
"""Batch size of tensor returned by `sample`.
Returns a scalar int32 tensor.
"""
raise NotImplementedError("batch_size has not been implemented")
示例13: initialize
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def initialize(self, name=None):
with ops.name_scope(name, "%sInitialize" % type(self).__name__):
(finished, next_inputs) = self._initialize_fn()
if self._batch_size is None:
self._batch_size = array_ops.size(finished)
return (finished, next_inputs)
示例14: sample
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def sample(self, time, outputs, state, name=None):
"""Returns `sample_id` of shape `[batch_size, vocab_size]`. If
`straight_through` is False, this is gumbel softmax distributions over
vocabulary with temperature `tau`. If `straight_through` is True,
this is one-hot vectors of the greedy samples.
"""
sample_ids = tf.nn.softmax(outputs / self._tau)
sample_ids = GumbelSoftmax(self._tau, logits=outputs).sample()
if self._straight_through:
size = tf.shape(sample_ids)[-1]
sample_ids_hard = tf.cast(
tf.one_hot(tf.argmax(sample_ids, -1), size), sample_ids.dtype)
sample_ids = tf.stop_gradient(sample_ids_hard - sample_ids) \
+ sample_ids
return sample_ids
示例15: _select_class_id
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import size [as 別名]
def _select_class_id(ids, selected_id):
"""Filter all but `selected_id` out of `ids`.
Args:
ids: `int64` `Tensor` or `SparseTensor` of IDs.
selected_id: Int id to select.
Returns:
`SparseTensor` of same dimensions as `ids`. This contains only the entries
equal to `selected_id`.
"""
ids = sparse_tensor.convert_to_tensor_or_sparse_tensor(ids)
if isinstance(ids, sparse_tensor.SparseTensor):
return sparse_ops.sparse_retain(
ids, math_ops.equal(ids.values, selected_id))
# TODO(ptucker): Make this more efficient, maybe add a sparse version of
# tf.equal and tf.reduce_any?
# Shape of filled IDs is the same as `ids` with the last dim collapsed to 1.
ids_shape = array_ops.shape(ids, out_type=dtypes.int64)
ids_last_dim = array_ops.size(ids_shape) - 1
filled_selected_id_shape = math_ops.reduced_shape(
ids_shape, array_ops.reshape(ids_last_dim, [1]))
# Intersect `ids` with the selected ID.
filled_selected_id = array_ops.fill(
filled_selected_id_shape, math_ops.to_int64(selected_id))
result = sets.set_intersection(filled_selected_id, ids)
return sparse_tensor.SparseTensor(
indices=result.indices, values=result.values, dense_shape=ids_shape)