當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.shape_internal方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.shape_internal方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.shape_internal方法的具體用法?Python array_ops.shape_internal怎麽用?Python array_ops.shape_internal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.shape_internal方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _as_indexed_slices

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def _as_indexed_slices(x, optimize=True):
  """Convert 'x' to IndexedSlices.

  Convert a dense Tensor to a block-sparse IndexedSlices.

  Args:
    x: Either a Tensor object, or an IndexedSlices object.
    optimize: if true, attempt to optimize the conversion of 'x'.

  Returns:
    An IndexedSlices object.

  Raises:
    TypeError: If 'x' is not a Tensor or an IndexedSlices object.
  """
  # TODO(touts): op_scope
  if not isinstance(x, (ops.Tensor, ops.IndexedSlices)):
    raise TypeError("Not a Tensor or IndexedSlices: %s" % type(x))
  if isinstance(x, ops.IndexedSlices):
    return x
  x_shape = array_ops.shape_internal(x, optimize=optimize)
  return ops.IndexedSlices(x, range(0, x_shape[0]), x_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:math_ops.py

示例2: ZerosLikeOutsideLoop

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeOutsideLoop(op, index):
  """Create zeros_like for the specified output of an op."""
  val = op.outputs[index]
  if not IsSwitch(op):
    return array_ops.zeros_like(val, optimize=False)
  else:
    op_ctxt = op._get_control_flow_context()
    if op_ctxt:
      # We are in a cond context. Use a switch to create zeros only when needed.
      pred = op_ctxt.pred
      branch = op_ctxt.branch
      switch_val = switch(op.inputs[0], pred)[1 - branch]
      zeros_shape = array_ops.shape_internal(switch_val, optimize=False)
      return array_ops.zeros(zeros_shape, dtype=val.dtype)
    else:
      return array_ops.zeros_like(val, optimize=False) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:control_flow_ops.py

示例3: PostProcessing

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def PostProcessing(self):
    """Perform postprocessing at the end of gradients().

    We have created the gradient graph at this point. So this function
    can be used to perform any postprocessing on the gradient graph.
    We currently perform the following postprocessing:
      1. Patch the gradient graph if the output of a loop variable
         doesn't depend on its input.
    """
    for _, grad_state in self._map.items():
      for _, b_merge in grad_state.switch_map.items():
        if b_merge.op.inputs[0] == b_merge.op.inputs[1]:
          # The value of this loop variable at iteration i+1 doesn't
          # depend on its value at iteration i. So use zeros as the
          # gradients for all iterations > 0.
          dtype = b_merge.op.inputs[0].dtype
          shape = b_merge.op.inputs[0].get_shape()
          # pylint: disable=protected-access
          if shape.is_fully_defined():
            grad_state.grad_context.Enter()
            # Create a zeros and use it for iterations > 0.
            grad_val = constant_op.constant(0, dtype=dtype, shape=shape)
            next_grad_val = _NextIteration(grad_val)
            grad_state.grad_context.Exit()
          else:
            # Create a zeros in the outer grad context.
            outer_grad_ctxt = grad_state.grad_context.outer_context
            if outer_grad_ctxt: outer_grad_ctxt.Enter()
            enter_grad_op = b_merge.op.inputs[0].op
            enter_grad = enter_grad_op.inputs[0]
            grad_shape = array_ops.shape_internal(enter_grad, optimize=False)
            grad_val = array_ops.zeros(grad_shape)
            if outer_grad_ctxt: outer_grad_ctxt.Exit()
            # Use the zeros for iterations > 0.
            grad_state.grad_context.Enter()
            next_grad_val = _NextIteration(grad_val)
            grad_state.grad_context.Exit()
          b_merge.op._update_input(1, next_grad_val)
          # pylint: enable=protected-access 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:control_flow_ops.py

示例4: ZerosLikeOutsideLoop

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeOutsideLoop(op, index):
  """Create zeros_like for the specified output of an op."""
  val = op.outputs[index]
  if not IsSwitch(op):
    return array_ops.zeros_like(val, optimize=False)
  else:
    op_ctxt = op._get_control_flow_context()
    pred = op_ctxt.pred
    branch = op_ctxt.branch
    switch_val = switch(op.inputs[0], pred)[1 - branch]
    zeros_shape = array_ops.shape_internal(switch_val, optimize=False)
    return array_ops.zeros(zeros_shape, dtype=val.dtype) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:14,代碼來源:control_flow_ops.py

示例5: ZerosLikeForExit

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeForExit(self, val):
    """Create zeros_like gradient for a loop exit.

    If the result of a loop variable is not used but is involved in
    computing the result of some needed loop variable, we create a
    zero-valued tensor that is fed as gradient for the Exit node of that
    loop variable. Note that val.op is an Exit, and this method must be
    called in the control flow context where gradients() is called.

    Args:
      val: The output tensor of an Exit op.

    Returns:
      A zero tensor of the same shape of val.
    """
    val_shape = val.get_shape()
    forward_ctxt = val.op._get_control_flow_context()
    outer_forward_ctxt = forward_ctxt.outer_context
    if outer_forward_ctxt:
      outer_forward_ctxt = outer_forward_ctxt.GetWhileContext()
    outer_grad_state = None
    if outer_forward_ctxt:
      outer_grad_state = self._map.get(outer_forward_ctxt)
    if outer_grad_state:
      # This is a nested loop.
      if val_shape.is_fully_defined():
        # If the shape is known statically, just create a zero tensor
        # with the right shape in the right context.
        outer_grad_state.grad_context.Enter()
        result = array_ops.zeros(val_shape.dims, val.dtype)
        outer_grad_state.grad_context.Exit()
      else:
        # Only the shape of value is needed for backprop.
        forward_ctxt.outer_context.Enter()
        shape = array_ops.shape_internal(val, optimize=False)
        forward_ctxt.outer_context.Exit()
        # Save the shape to a stack.
        history_shape = outer_grad_state.AddForwardAccumulator(shape)
        # Get the shape back from the stack.
        outer_grad_ctxt = outer_grad_state.grad_context
        outer_grad_ctxt.Enter()
        real_shape = outer_grad_state.AddBackPropAccumulatedValue(
            history_shape, shape)
        result = array_ops.zeros(real_shape, val.dtype)
        outer_grad_ctxt.Exit()
    else:
      # This is not a nested loop.
      if val_shape.is_fully_defined():
        # If the shape is known statically, just create a zero tensor
        # with the right shape.
        result = array_ops.zeros(val_shape.dims, val.dtype)
      else:
        result = array_ops.zeros_like(val, optimize=False)
    return result 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:56,代碼來源:control_flow_ops.py

示例6: ZerosLike

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLike(self, op, index):
    """Create zeros_like for the specified output of an op.

    If op is in a while loop that is part of gradients(), this method
    must be called in its grad loop context.

    Args:
      op: A tensorflow operation.
      index: the index for a specific output of the op.

    Returns:
      A zero tensor of the same shape of op.outputs[index].
    """
    if IsLoopSwitch(op): return None
    dead_branch = IsSwitch(op)
    forward_ctxt = _GetWhileContext(op)
    grad_state = self._map.get(forward_ctxt)
    if grad_state is None:
      # op is not in a while loop that is part of gradients().
      return ZerosLikeOutsideLoop(op, index)
    op_ctxt = op._get_control_flow_context()
    val = ops.convert_to_tensor(op.outputs[index], name="tensor")
    shape = val.get_shape()
    if shape.is_fully_defined():
      # If the shape is known statically, just create a zero tensor with
      # the right shape in the grad loop context.
      result = constant_op.constant(0, shape=shape.dims, dtype=val.dtype)
      if dead_branch:
        # op is a cond switch. Guard the zero tensor with a switch.
        pred = grad_state.history_map.get(op_ctxt.pred.name)
        branch = op_ctxt.branch
        result = _SwitchRefOrTensor(result, pred)[1 - branch]
    else:
      # Unknown shape so keep a history of the shape at runtime.
      if dead_branch:
        # Need to add a special switch to guard the value.
        pred = op_ctxt.pred
        branch = op_ctxt.branch
        op_ctxt.outer_context.Enter()
        val = _SwitchRefOrTensor(op.inputs[0], pred)[1 - branch]
        zeros_shape = array_ops.shape_internal(val, optimize=False)
        op_ctxt.outer_context.Exit()
        val.op._set_control_flow_context(op_ctxt)
        zeros_shape.op._set_control_flow_context(op_ctxt)
      else:
        op_ctxt.Enter()
        zeros_shape = array_ops.shape_internal(val, optimize=False)
        op_ctxt.Exit()

      # Add forward accumulator for shape.
      grad_state.grad_context.Exit()
      history_zeros_shape = grad_state.AddForwardAccumulator(
          zeros_shape, dead_branch=dead_branch)
      grad_state.grad_context.Enter()

      # Create a zero tensor with the right shape.
      shape = grad_state.AddBackPropAccumulatedValue(
          history_zeros_shape, zeros_shape, dead_branch)
      result = array_ops.zeros(shape, val.dtype)
    return result 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:62,代碼來源:control_flow_ops.py

示例7: ZerosLikeForExit

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeForExit(self, val):
    """Create zeros_like gradient for a loop exit.

    If the result of a loop variable is not used but is involved in
    computing the result of some needed loop variable, we create a
    zero-valued tensor that is fed as gradient for the Exit node of that
    loop variable. Note that val.op is an Exit, and this method must be
    called in the control flow context where gradients() is called.

    Args:
      val: The output tensor of an Exit op.

    Returns:
      A zero tensor of the same shape of val.
    """
    val_shape = val.get_shape()
    forward_ctxt = val.op._get_control_flow_context()
    outer_forward_ctxt = forward_ctxt.outer_context
    if outer_forward_ctxt:
      outer_forward_ctxt = outer_forward_ctxt.GetWhileContext()
    outer_grad_state = None
    if outer_forward_ctxt:
      outer_grad_state = self._map.get(outer_forward_ctxt)
    if outer_grad_state:
      # This is a nested loop.
      if val_shape.is_fully_defined():
        # If the shape is known statically, just create a zero tensor
        # with the right shape in the right context.
        outer_grad_state.grad_context.Enter()
        result = array_ops.zeros(val_shape.dims, val.dtype)
        outer_grad_state.grad_context.Exit()
      else:
        # Only the shape of value is needed for backprop.
        forward_ctxt.outer_context.Enter()
        shape = array_ops.shape_internal(val, optimize=False)
        forward_ctxt.outer_context.Exit()
        # Save the shape to a stack.
        history_shape = outer_grad_state.AddForwardAccumulator(shape)
        # Get the shape back from the stack.
        outer_grad_ctxt = outer_grad_state.grad_context
        outer_grad_ctxt.Enter()
        real_shape = outer_grad_state.AddBackpropAccumulatedValue(
            history_shape, shape)
        result = array_ops.zeros(real_shape, val.dtype)
        outer_grad_ctxt.Exit()
    else:
      # This is not a nested loop.
      if val_shape.is_fully_defined():
        # If the shape is known statically, just create a zero tensor
        # with the right shape.
        result = array_ops.zeros(val_shape.dims, val.dtype)
      else:
        result = array_ops.zeros_like(val, optimize=False)
    return result 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:56,代碼來源:control_flow_ops.py

示例8: ZerosLike

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLike(self, op, index):
    """Create zeros_like for the specified output of an op.

    If op is in a while loop that is part of gradients(), this method
    must be called in its grad loop context.

    Args:
      op: A tensorflow operation.
      index: the index for a specific output of the op.

    Returns:
      A zero tensor of the same shape of op.outputs[index].
    """
    if IsLoopSwitch(op): return None
    dead_branch = IsSwitch(op)
    forward_ctxt = _GetWhileContext(op)
    grad_state = self._map.get(forward_ctxt)
    if grad_state is None:
      # op is not in a while loop that is part of gradients().
      return ZerosLikeOutsideLoop(op, index)
    op_ctxt = op._get_control_flow_context()
    val = ops.convert_to_tensor(op.outputs[index], name="tensor")
    shape = val.get_shape()
    if shape.is_fully_defined():
      # If the shape is known statically, just create a zero tensor with
      # the right shape in the grad loop context.
      result = constant_op.constant(0, shape=shape.dims, dtype=val.dtype)
      if dead_branch:
        # op is a cond switch. Guard the zero tensor with a switch.
        pred = grad_state.history_map.get(op_ctxt.pred.name)
        branch = op_ctxt.branch
        result = _SwitchRefOrTensor(result, pred)[1 - branch]
    else:
      # Unknown shape so keep a history of the shape at runtime.
      if dead_branch:
        # Need to add a special switch to guard the value.
        pred = op_ctxt.pred
        branch = op_ctxt.branch
        op_ctxt.outer_context.Enter()
        val = _SwitchRefOrTensor(op.inputs[0], pred)[1 - branch]
        zeros_shape = array_ops.shape_internal(val, optimize=False)
        op_ctxt.outer_context.Exit()
        val.op._set_control_flow_context(op_ctxt)
        zeros_shape.op._set_control_flow_context(op_ctxt)
      else:
        op_ctxt.Enter()
        zeros_shape = array_ops.shape_internal(val, optimize=False)
        op_ctxt.Exit()

      # Add forward accumulator for shape.
      grad_state.grad_context.Exit()
      history_zeros_shape = grad_state.AddForwardAccumulator(
          zeros_shape, dead_branch=dead_branch)
      grad_state.grad_context.Enter()

      # Create a zero tensor with the right shape.
      shape = grad_state.AddBackpropAccumulatedValue(
          history_zeros_shape, zeros_shape, dead_branch)
      result = array_ops.zeros(shape, val.dtype)
    return result 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:62,代碼來源:control_flow_ops.py


注:本文中的tensorflow.python.ops.array_ops.shape_internal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。