本文整理匯總了Python中tensorflow.python.ops.array_ops.shape_internal方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.shape_internal方法的具體用法?Python array_ops.shape_internal怎麽用?Python array_ops.shape_internal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.shape_internal方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _as_indexed_slices
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def _as_indexed_slices(x, optimize=True):
"""Convert 'x' to IndexedSlices.
Convert a dense Tensor to a block-sparse IndexedSlices.
Args:
x: Either a Tensor object, or an IndexedSlices object.
optimize: if true, attempt to optimize the conversion of 'x'.
Returns:
An IndexedSlices object.
Raises:
TypeError: If 'x' is not a Tensor or an IndexedSlices object.
"""
# TODO(touts): op_scope
if not isinstance(x, (ops.Tensor, ops.IndexedSlices)):
raise TypeError("Not a Tensor or IndexedSlices: %s" % type(x))
if isinstance(x, ops.IndexedSlices):
return x
x_shape = array_ops.shape_internal(x, optimize=optimize)
return ops.IndexedSlices(x, range(0, x_shape[0]), x_shape)
示例2: ZerosLikeOutsideLoop
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeOutsideLoop(op, index):
"""Create zeros_like for the specified output of an op."""
val = op.outputs[index]
if not IsSwitch(op):
return array_ops.zeros_like(val, optimize=False)
else:
op_ctxt = op._get_control_flow_context()
if op_ctxt:
# We are in a cond context. Use a switch to create zeros only when needed.
pred = op_ctxt.pred
branch = op_ctxt.branch
switch_val = switch(op.inputs[0], pred)[1 - branch]
zeros_shape = array_ops.shape_internal(switch_val, optimize=False)
return array_ops.zeros(zeros_shape, dtype=val.dtype)
else:
return array_ops.zeros_like(val, optimize=False)
示例3: PostProcessing
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def PostProcessing(self):
"""Perform postprocessing at the end of gradients().
We have created the gradient graph at this point. So this function
can be used to perform any postprocessing on the gradient graph.
We currently perform the following postprocessing:
1. Patch the gradient graph if the output of a loop variable
doesn't depend on its input.
"""
for _, grad_state in self._map.items():
for _, b_merge in grad_state.switch_map.items():
if b_merge.op.inputs[0] == b_merge.op.inputs[1]:
# The value of this loop variable at iteration i+1 doesn't
# depend on its value at iteration i. So use zeros as the
# gradients for all iterations > 0.
dtype = b_merge.op.inputs[0].dtype
shape = b_merge.op.inputs[0].get_shape()
# pylint: disable=protected-access
if shape.is_fully_defined():
grad_state.grad_context.Enter()
# Create a zeros and use it for iterations > 0.
grad_val = constant_op.constant(0, dtype=dtype, shape=shape)
next_grad_val = _NextIteration(grad_val)
grad_state.grad_context.Exit()
else:
# Create a zeros in the outer grad context.
outer_grad_ctxt = grad_state.grad_context.outer_context
if outer_grad_ctxt: outer_grad_ctxt.Enter()
enter_grad_op = b_merge.op.inputs[0].op
enter_grad = enter_grad_op.inputs[0]
grad_shape = array_ops.shape_internal(enter_grad, optimize=False)
grad_val = array_ops.zeros(grad_shape)
if outer_grad_ctxt: outer_grad_ctxt.Exit()
# Use the zeros for iterations > 0.
grad_state.grad_context.Enter()
next_grad_val = _NextIteration(grad_val)
grad_state.grad_context.Exit()
b_merge.op._update_input(1, next_grad_val)
# pylint: enable=protected-access
示例4: ZerosLikeOutsideLoop
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeOutsideLoop(op, index):
"""Create zeros_like for the specified output of an op."""
val = op.outputs[index]
if not IsSwitch(op):
return array_ops.zeros_like(val, optimize=False)
else:
op_ctxt = op._get_control_flow_context()
pred = op_ctxt.pred
branch = op_ctxt.branch
switch_val = switch(op.inputs[0], pred)[1 - branch]
zeros_shape = array_ops.shape_internal(switch_val, optimize=False)
return array_ops.zeros(zeros_shape, dtype=val.dtype)
示例5: ZerosLikeForExit
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeForExit(self, val):
"""Create zeros_like gradient for a loop exit.
If the result of a loop variable is not used but is involved in
computing the result of some needed loop variable, we create a
zero-valued tensor that is fed as gradient for the Exit node of that
loop variable. Note that val.op is an Exit, and this method must be
called in the control flow context where gradients() is called.
Args:
val: The output tensor of an Exit op.
Returns:
A zero tensor of the same shape of val.
"""
val_shape = val.get_shape()
forward_ctxt = val.op._get_control_flow_context()
outer_forward_ctxt = forward_ctxt.outer_context
if outer_forward_ctxt:
outer_forward_ctxt = outer_forward_ctxt.GetWhileContext()
outer_grad_state = None
if outer_forward_ctxt:
outer_grad_state = self._map.get(outer_forward_ctxt)
if outer_grad_state:
# This is a nested loop.
if val_shape.is_fully_defined():
# If the shape is known statically, just create a zero tensor
# with the right shape in the right context.
outer_grad_state.grad_context.Enter()
result = array_ops.zeros(val_shape.dims, val.dtype)
outer_grad_state.grad_context.Exit()
else:
# Only the shape of value is needed for backprop.
forward_ctxt.outer_context.Enter()
shape = array_ops.shape_internal(val, optimize=False)
forward_ctxt.outer_context.Exit()
# Save the shape to a stack.
history_shape = outer_grad_state.AddForwardAccumulator(shape)
# Get the shape back from the stack.
outer_grad_ctxt = outer_grad_state.grad_context
outer_grad_ctxt.Enter()
real_shape = outer_grad_state.AddBackPropAccumulatedValue(
history_shape, shape)
result = array_ops.zeros(real_shape, val.dtype)
outer_grad_ctxt.Exit()
else:
# This is not a nested loop.
if val_shape.is_fully_defined():
# If the shape is known statically, just create a zero tensor
# with the right shape.
result = array_ops.zeros(val_shape.dims, val.dtype)
else:
result = array_ops.zeros_like(val, optimize=False)
return result
示例6: ZerosLike
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLike(self, op, index):
"""Create zeros_like for the specified output of an op.
If op is in a while loop that is part of gradients(), this method
must be called in its grad loop context.
Args:
op: A tensorflow operation.
index: the index for a specific output of the op.
Returns:
A zero tensor of the same shape of op.outputs[index].
"""
if IsLoopSwitch(op): return None
dead_branch = IsSwitch(op)
forward_ctxt = _GetWhileContext(op)
grad_state = self._map.get(forward_ctxt)
if grad_state is None:
# op is not in a while loop that is part of gradients().
return ZerosLikeOutsideLoop(op, index)
op_ctxt = op._get_control_flow_context()
val = ops.convert_to_tensor(op.outputs[index], name="tensor")
shape = val.get_shape()
if shape.is_fully_defined():
# If the shape is known statically, just create a zero tensor with
# the right shape in the grad loop context.
result = constant_op.constant(0, shape=shape.dims, dtype=val.dtype)
if dead_branch:
# op is a cond switch. Guard the zero tensor with a switch.
pred = grad_state.history_map.get(op_ctxt.pred.name)
branch = op_ctxt.branch
result = _SwitchRefOrTensor(result, pred)[1 - branch]
else:
# Unknown shape so keep a history of the shape at runtime.
if dead_branch:
# Need to add a special switch to guard the value.
pred = op_ctxt.pred
branch = op_ctxt.branch
op_ctxt.outer_context.Enter()
val = _SwitchRefOrTensor(op.inputs[0], pred)[1 - branch]
zeros_shape = array_ops.shape_internal(val, optimize=False)
op_ctxt.outer_context.Exit()
val.op._set_control_flow_context(op_ctxt)
zeros_shape.op._set_control_flow_context(op_ctxt)
else:
op_ctxt.Enter()
zeros_shape = array_ops.shape_internal(val, optimize=False)
op_ctxt.Exit()
# Add forward accumulator for shape.
grad_state.grad_context.Exit()
history_zeros_shape = grad_state.AddForwardAccumulator(
zeros_shape, dead_branch=dead_branch)
grad_state.grad_context.Enter()
# Create a zero tensor with the right shape.
shape = grad_state.AddBackPropAccumulatedValue(
history_zeros_shape, zeros_shape, dead_branch)
result = array_ops.zeros(shape, val.dtype)
return result
示例7: ZerosLikeForExit
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLikeForExit(self, val):
"""Create zeros_like gradient for a loop exit.
If the result of a loop variable is not used but is involved in
computing the result of some needed loop variable, we create a
zero-valued tensor that is fed as gradient for the Exit node of that
loop variable. Note that val.op is an Exit, and this method must be
called in the control flow context where gradients() is called.
Args:
val: The output tensor of an Exit op.
Returns:
A zero tensor of the same shape of val.
"""
val_shape = val.get_shape()
forward_ctxt = val.op._get_control_flow_context()
outer_forward_ctxt = forward_ctxt.outer_context
if outer_forward_ctxt:
outer_forward_ctxt = outer_forward_ctxt.GetWhileContext()
outer_grad_state = None
if outer_forward_ctxt:
outer_grad_state = self._map.get(outer_forward_ctxt)
if outer_grad_state:
# This is a nested loop.
if val_shape.is_fully_defined():
# If the shape is known statically, just create a zero tensor
# with the right shape in the right context.
outer_grad_state.grad_context.Enter()
result = array_ops.zeros(val_shape.dims, val.dtype)
outer_grad_state.grad_context.Exit()
else:
# Only the shape of value is needed for backprop.
forward_ctxt.outer_context.Enter()
shape = array_ops.shape_internal(val, optimize=False)
forward_ctxt.outer_context.Exit()
# Save the shape to a stack.
history_shape = outer_grad_state.AddForwardAccumulator(shape)
# Get the shape back from the stack.
outer_grad_ctxt = outer_grad_state.grad_context
outer_grad_ctxt.Enter()
real_shape = outer_grad_state.AddBackpropAccumulatedValue(
history_shape, shape)
result = array_ops.zeros(real_shape, val.dtype)
outer_grad_ctxt.Exit()
else:
# This is not a nested loop.
if val_shape.is_fully_defined():
# If the shape is known statically, just create a zero tensor
# with the right shape.
result = array_ops.zeros(val_shape.dims, val.dtype)
else:
result = array_ops.zeros_like(val, optimize=False)
return result
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:56,代碼來源:control_flow_ops.py
示例8: ZerosLike
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape_internal [as 別名]
def ZerosLike(self, op, index):
"""Create zeros_like for the specified output of an op.
If op is in a while loop that is part of gradients(), this method
must be called in its grad loop context.
Args:
op: A tensorflow operation.
index: the index for a specific output of the op.
Returns:
A zero tensor of the same shape of op.outputs[index].
"""
if IsLoopSwitch(op): return None
dead_branch = IsSwitch(op)
forward_ctxt = _GetWhileContext(op)
grad_state = self._map.get(forward_ctxt)
if grad_state is None:
# op is not in a while loop that is part of gradients().
return ZerosLikeOutsideLoop(op, index)
op_ctxt = op._get_control_flow_context()
val = ops.convert_to_tensor(op.outputs[index], name="tensor")
shape = val.get_shape()
if shape.is_fully_defined():
# If the shape is known statically, just create a zero tensor with
# the right shape in the grad loop context.
result = constant_op.constant(0, shape=shape.dims, dtype=val.dtype)
if dead_branch:
# op is a cond switch. Guard the zero tensor with a switch.
pred = grad_state.history_map.get(op_ctxt.pred.name)
branch = op_ctxt.branch
result = _SwitchRefOrTensor(result, pred)[1 - branch]
else:
# Unknown shape so keep a history of the shape at runtime.
if dead_branch:
# Need to add a special switch to guard the value.
pred = op_ctxt.pred
branch = op_ctxt.branch
op_ctxt.outer_context.Enter()
val = _SwitchRefOrTensor(op.inputs[0], pred)[1 - branch]
zeros_shape = array_ops.shape_internal(val, optimize=False)
op_ctxt.outer_context.Exit()
val.op._set_control_flow_context(op_ctxt)
zeros_shape.op._set_control_flow_context(op_ctxt)
else:
op_ctxt.Enter()
zeros_shape = array_ops.shape_internal(val, optimize=False)
op_ctxt.Exit()
# Add forward accumulator for shape.
grad_state.grad_context.Exit()
history_zeros_shape = grad_state.AddForwardAccumulator(
zeros_shape, dead_branch=dead_branch)
grad_state.grad_context.Enter()
# Create a zero tensor with the right shape.
shape = grad_state.AddBackpropAccumulatedValue(
history_zeros_shape, zeros_shape, dead_branch)
result = array_ops.zeros(shape, val.dtype)
return result
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:62,代碼來源:control_flow_ops.py