本文整理匯總了Python中tensorflow.python.ops.array_ops.shape方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.shape方法的具體用法?Python array_ops.shape怎麽用?Python array_ops.shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scheduled_sampling
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
with variable_scope.variable_scope("ScheduledEmbedding"):
# Return -1s where we do not sample, and sample_ids elsewhere
select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
select_sample = select_sampler.sample(sample_shape=batch_size)
sample_ids = array_ops.where(
select_sample,
tf.range(batch_size),
gen_array_ops.fill([batch_size], -1))
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), tf.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), tf.int32)
_estimate = array_ops.gather_nd(estimate, where_sampling)
_true = array_ops.gather_nd(true, where_not_sampling)
base_shape = array_ops.shape(true)
result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
result = result1 + result2
return result1 + result2
示例2: _parse_image
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def _parse_image(self, image_path):
"""
Function that loads the images given the path.
Args:
image_path: Path to an image file.
Returns:
image: A tf tensor of the loaded image.
"""
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.convert_image_dtype(image, tf.float32)
# Check if image is large enough
if tf.keras.backend.image_data_format() == 'channels_last':
shape = array_ops.shape(image)[:2]
else:
shape = array_ops.shape(image)[1:]
cond = math_ops.reduce_all(shape >= tf.constant(self.image_size))
image = tf.cond(cond, lambda: tf.identity(image),
lambda: tf.image.resize(image, [self.image_size, self.image_size]))
return image
示例3: __init__
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def __init__(self, initialize_fn, sample_fn, next_inputs_fn,
sample_ids_shape=None, sample_ids_dtype=None):
"""Initializer.
Args:
initialize_fn: callable that returns `(finished, next_inputs)`
for the first iteration.
sample_fn: callable that takes `(time, outputs, state)`
and emits tensor `sample_ids`.
next_inputs_fn: callable that takes `(time, outputs, state, sample_ids)`
and emits `(finished, next_inputs, next_state)`.
sample_ids_shape: Either a list of integers, or a 1-D Tensor of type
`int32`, the shape of each value in the `sample_ids` batch. Defaults to
a scalar.
sample_ids_dtype: The dtype of the `sample_ids` tensor. Defaults to int32.
"""
self._initialize_fn = initialize_fn
self._sample_fn = sample_fn
self._next_inputs_fn = next_inputs_fn
self._batch_size = None
self._sample_ids_shape = tensor_shape.TensorShape(sample_ids_shape or [])
self._sample_ids_dtype = sample_ids_dtype or dtypes.int32
示例4: call
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def call(self, inputs):
"""Invokes this layer.
Parameters
----------
inputs: list
Should be of form `inputs=[coords, nbr_list]` where `coords` is a tensor of shape `(None, N, 3)` and `nbr_list` is a list.
"""
if len(inputs) != 2:
raise ValueError("InteratomicDistances requires coords,nbr_list")
coords, nbr_list = (inputs[0], inputs[1])
N_atoms, M_nbrs, ndim = self.N_atoms, self.M_nbrs, self.ndim
# Shape (N_atoms, M_nbrs, ndim)
nbr_coords = tf.gather(coords, nbr_list)
# Shape (N_atoms, M_nbrs, ndim)
tiled_coords = tf.tile(
tf.reshape(coords, (N_atoms, 1, ndim)), (1, M_nbrs, 1))
# Shape (N_atoms, M_nbrs)
return tf.reduce_sum((tiled_coords - nbr_coords)**2, axis=2)
示例5: build
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def build(self, input_shape):
# Generate the nb_affine weights and biases
num_deg = 2 * self.max_degree + (1 - self.min_degree)
self.W_list = [
self.add_weight(
name='kernel',
shape=(int(input_shape[0][-1]), self.out_channel),
initializer='glorot_uniform',
trainable=True) for k in range(num_deg)
]
self.b_list = [
self.add_weight(
name='bias',
shape=(self.out_channel,),
initializer='zeros',
trainable=True) for k in range(num_deg)
]
self.built = True
示例6: get_cells
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def get_cells(self):
"""Returns the locations of all grid points in box.
Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1.
Then would return a list of length 20^3 whose entries would be
[(-10, -10, -10), (-10, -10, -9), ..., (9, 9, 9)]
Returns
-------
cells: tf.Tensor
(n_cells, ndim) shape.
"""
start, stop, nbr_cutoff = self.start, self.stop, self.nbr_cutoff
mesh_args = [tf.range(start, stop, nbr_cutoff) for _ in range(self.ndim)]
return tf.cast(
tf.reshape(
tf.transpose(tf.stack(tf.meshgrid(*mesh_args))),
(self.n_cells, self.ndim)), tf.float32)
示例7: radial_symmetry_function
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def radial_symmetry_function(self, R, rc, rs, e):
"""Calculates radial symmetry function.
B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_filters
Parameters
----------
R: tf.Tensor of shape (B, N, M)
Distance matrix.
rc: float
Interaction cutoff [Angstrom].
rs: float
Gaussian distance matrix mean.
e: float
Gaussian distance matrix width.
Returns
-------
retval: tf.Tensor of shape (B, N, M)
Radial symmetry function (before summation)
"""
K = self.gaussian_distance_matrix(R, rs, e)
FC = self.radial_cutoff(R, rc)
return tf.multiply(K, FC)
示例8: distance_matrix
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def distance_matrix(self, D):
"""Calcuates the distance matrix from the distance tensor
B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features
Parameters
----------
D: tf.Tensor of shape (B, N, M, d)
Distance tensor.
Returns
-------
R: tf.Tensor of shape (B, N, M)
Distance matrix.
"""
R = tf.reduce_sum(tf.multiply(D, D), 3)
R = tf.sqrt(R)
return R
示例9: __init__
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def __init__(self, num_filters, **kwargs):
"""
Parameters
----------
num_filters: int
Number of filters to have in the output
in_layers: list of Layers or tensors
[V, A, mask]
V are the vertex features must be of shape (batch, vertex, channel)
A are the adjacency matrixes for each graph
Shape (batch, from_vertex, adj_matrix, to_vertex)
mask is optional, to be used when not every graph has the
same number of vertices
Returns: tf.tensor
Returns a tf.tensor with a graph convolution applied
The shape will be (batch, vertex, self.num_filters)
"""
super(GraphCNN, self).__init__(**kwargs)
self.num_filters = num_filters
示例10: dense_to_sparse
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
"""Converts a dense tensor into a sparse tensor.
An example use would be to convert dense labels to sparse ones
so that they can be fed to the ctc_loss.
Args:
tensor: An `int` `Tensor` to be converted to a `Sparse`.
eos_token: An integer. It is part of the target label that signifies the
end of a sentence.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
"""
with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
tensor = ops.convert_to_tensor(tensor)
indices = array_ops.where(
math_ops.not_equal(tensor, constant_op.constant(eos_token,
tensor.dtype)))
values = array_ops.gather_nd(tensor, indices)
shape = array_ops.shape(tensor, out_type=dtypes.int64)
outputs = sparse_tensor.SparseTensor(indices, values, shape)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
示例11: flatten
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def flatten(inputs, outputs_collections=None, scope=None):
"""Flattens the input while maintaining the batch_size.
Assumes that the first dimension represents the batch.
Args:
inputs: A tensor of size [batch_size, ...].
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
Returns:
A flattened tensor with shape [batch_size, k].
Raises:
ValueError: If inputs rank is unknown or less than 2.
"""
with ops.name_scope(scope, 'Flatten', [inputs]) as sc:
inputs = ops.convert_to_tensor(inputs)
outputs = core_layers.flatten(inputs)
return utils.collect_named_outputs(outputs_collections, sc, outputs)
示例12: _dense_inner_flatten
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def _dense_inner_flatten(inputs, new_rank):
"""Helper function for `inner_flatten`."""
rank_assertion = check_ops.assert_rank_at_least(
inputs, new_rank, message='inputs has rank less than new_rank')
with ops.control_dependencies([rank_assertion]):
outer_dimensions = array_ops.strided_slice(
array_ops.shape(inputs), [0], [new_rank - 1])
new_shape = array_ops.concat((outer_dimensions, [-1]), 0)
reshaped = array_ops.reshape(inputs, new_shape)
# if `new_rank` is an integer, try to calculate new shape.
if isinstance(new_rank, six.integer_types):
static_shape = inputs.get_shape()
if static_shape is not None and static_shape.dims is not None:
static_shape = static_shape.as_list()
static_outer_dims = static_shape[:new_rank - 1]
static_inner_dims = static_shape[new_rank - 1:]
flattened_dimension = 1
for inner_dim in static_inner_dims:
if inner_dim is None:
flattened_dimension = None
break
flattened_dimension *= inner_dim
reshaped.set_shape(static_outer_dims + [flattened_dimension])
return reshaped
示例13: softmax
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def softmax(logits, scope=None):
"""Performs softmax on Nth dimension of N-dimensional logit tensor.
For two-dimensional logits this reduces to tf.nn.softmax. The N-th dimension
needs to have a specified number of elements (number of classes).
Args:
logits: N-dimensional `Tensor` with logits, where N > 1.
scope: Optional scope for variable_scope.
Returns:
A `Tensor` with same shape and type as logits.
"""
# TODO(jrru): Add axis argument which defaults to last dimension.
with variable_scope.variable_scope(scope, 'softmax', [logits]):
num_logits = utils.last_dimension(logits.get_shape(), min_rank=2)
logits_2d = array_ops.reshape(logits, [-1, num_logits])
predictions = nn.softmax(logits_2d)
predictions = array_ops.reshape(predictions, array_ops.shape(logits))
if not context.executing_eagerly():
predictions.set_shape(logits.get_shape())
return predictions
示例14: _ImageDimensions
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def _ImageDimensions(image):
"""Returns the dimensions of an image tensor.
Args:
image: A 3-D Tensor of shape `[height, width, channels]`.
Returns:
A list of `[height, width, channels]` corresponding to the dimensions of the
input image. Dimensions that are statically known are python integers,
otherwise they are integer scalar tensors.
"""
if image.get_shape().is_fully_defined():
return image.get_shape().as_list()
else:
static_shape = image.get_shape().with_rank(3).as_list()
dynamic_shape = array_ops.unstack(array_ops.shape(image), 3)
return [s if s is not None else d
for s, d in zip(static_shape, dynamic_shape)]
示例15: fix_image_flip_shape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 別名]
def fix_image_flip_shape(image, result):
"""Set the shape to 3 dimensional if we don't know anything else.
Args:
image: original image size
result: flipped or transformed image
Returns:
An image whose shape is at least None,None,None.
"""
image_shape = image.get_shape()
if image_shape == tensor_shape.unknown_shape():
result.set_shape([None, None, None])
else:
result.set_shape(image_shape)
return result
# =========================================================================== #
# Image + BBoxes methods: cropping, resizing, flipping, ...
# =========================================================================== #