本文整理匯總了Python中tensorflow.python.ops.array_ops.setdiff1d方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.setdiff1d方法的具體用法?Python array_ops.setdiff1d怎麽用?Python array_ops.setdiff1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.setdiff1d方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _ProdGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import setdiff1d [as 別名]
def _ProdGrad(op, grad):
"""Gradient for Prod."""
# The gradient can be expressed by dividing the product by each entry of the
# input tensor, but this approach can't deal with zeros in the input.
# Here, we avoid this problem by composing the output as a product of two
# cumprod operations.
input_shape = array_ops.shape(op.inputs[0])
# Reshape reduction indices for the case where the parameter is a scalar
reduction_indices = array_ops.reshape(op.inputs[1], [-1])
# Expand grad to full input shape
output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
grad = array_ops.reshape(grad, output_shape_kept_dims)
grad = array_ops.tile(grad, tile_scaling)
# Pack all reduced dimensions into a single one, so we can perform the
# cumprod ops. If the reduction dims list is empty, it defaults to float32,
# so we need to cast here. We put all the shape-related ops on CPU to avoid
# copying back and forth, and since listdiff is CPU only.
with ops.device("/cpu:0"):
reduced = math_ops.cast(reduction_indices, dtypes.int32)
idx = math_ops.range(0, array_ops.rank(op.inputs[0]))
other, _ = array_ops.setdiff1d(idx, reduced)
perm = array_ops.concat([reduced, other], 0)
reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced))
other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
permuted = array_ops.transpose(op.inputs[0], perm)
permuted_shape = array_ops.shape(permuted)
reshaped = array_ops.reshape(permuted, (reduced_num, other_num))
# Calculate product, leaving out the current entry
left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
y = array_ops.reshape(left * right, permuted_shape)
# Invert the transpose and reshape operations.
# Make sure to set the statically known shape information through a reshape.
out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm))
return array_ops.reshape(out, input_shape), None
示例2: _ProdGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import setdiff1d [as 別名]
def _ProdGrad(op, grad):
"""Gradient for Prod."""
# The gradient can be expressed by dividing the product by each entry of the
# input tensor, but this approach can't deal with zeros in the input.
# Here, we avoid this problem by composing the output as a product of two
# cumprod operations.
input_shape = array_ops.shape(op.inputs[0])
# Reshape reduction indices for the case where the parameter is a scalar
reduction_indices = array_ops.reshape(op.inputs[1], [-1])
# Expand grad to full input shape
output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
grad = array_ops.reshape(grad, output_shape_kept_dims)
grad = array_ops.tile(grad, tile_scaling)
# Pack all reduced dimensions into a single one, so we can perform the
# cumprod ops. If the reduction dims list is empty, it defaults to float32,
# so we need to cast here. We put all the shape-related ops on CPU to avoid
# copying back and forth, and since listdiff is CPU only.
with ops.device("/cpu:0"):
reduced = math_ops.cast(reduction_indices, dtypes.int32)
idx = math_ops.range(0, array_ops.rank(op.inputs[0]))
other, _ = array_ops.setdiff1d(idx, reduced)
perm = array_ops.concat(0, [reduced, other])
reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced))
other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
permuted = array_ops.transpose(op.inputs[0], perm)
permuted_shape = array_ops.shape(permuted)
reshaped = array_ops.reshape(permuted, (reduced_num, other_num))
# Calculate product, leaving out the current entry
left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
y = array_ops.reshape(left * right, permuted_shape)
# Invert the transpose and reshape operations.
# Make sure to set the statically known shape information through a reshape.
out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm))
return array_ops.reshape(out, input_shape), None
示例3: compute_augmented_facility_locations
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import setdiff1d [as 別名]
def compute_augmented_facility_locations(pairwise_distances, labels, all_ids,
margin_multiplier, margin_type):
"""Computes the centroid locations.
Args:
pairwise_distances: 2-D Tensor of pairwise distances.
labels: 1-D Tensor of ground truth cluster assignment.
all_ids: 1-D Tensor of all data indices.
margin_multiplier: multiplication constant.
margin_type: Type of structured margin to use. Default is nmi.
Returns:
chosen_ids: 1-D Tensor of chosen centroid indices.
"""
def func_cond_augmented(iteration, chosen_ids):
del chosen_ids # Unused argument in func_cond_augmented.
return iteration < num_classes
def func_body_augmented(iteration, chosen_ids):
# find a new facility location to add
# based on the clustering score and the NMI score
candidate_ids = array_ops.setdiff1d(all_ids, chosen_ids)[0]
new_chosen_idx = _find_loss_augmented_facility_idx(pairwise_distances,
labels, chosen_ids,
candidate_ids,
margin_multiplier,
margin_type)
chosen_ids = array_ops.concat([chosen_ids, [new_chosen_idx]], 0)
return iteration + 1, chosen_ids
num_classes = array_ops.size(array_ops.unique(labels)[0])
chosen_ids = array_ops.constant(0, dtype=dtypes.int32, shape=[0])
# num_classes get determined at run time based on the sampled batch.
iteration = array_ops.constant(0)
_, chosen_ids = control_flow_ops.while_loop(
func_cond_augmented,
func_body_augmented, [iteration, chosen_ids],
shape_invariants=[iteration.get_shape(), tensor_shape.TensorShape(
[None])])
return chosen_ids
示例4: _ProdGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import setdiff1d [as 別名]
def _ProdGrad(op, grad):
"""Gradient for Prod."""
# The gradient can be expressed by dividing the product by each entry of the
# input tensor, but this approach can't deal with zeros in the input.
# Here, we avoid this problem by composing the output as a product of two
# cumprod operations.
input_shape = array_ops.shape(op.inputs[0])
# Reshape reduction indices for the case where the parameter is a scalar
reduction_indices = array_ops.reshape(op.inputs[1], [-1])
# Expand grad to full input shape
output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
grad = array_ops.reshape(grad, output_shape_kept_dims)
grad = array_ops.tile(grad, tile_scaling)
# Pack all reduced dimensions into a single one, so we can perform the
# cumprod ops. If the reduction dims list is empty, it defaults to float32,
# so we need to cast here. We put all the shape-related ops on CPU to avoid
# copying back and forth, and since listdiff is CPU only.
with ops.device("/cpu:0"):
rank = array_ops.rank(op.inputs[0])
reduction_indices = (reduction_indices + rank) % rank
reduced = math_ops.cast(reduction_indices, dtypes.int32)
idx = math_ops.range(0, rank)
other, _ = array_ops.setdiff1d(idx, reduced)
perm = array_ops.concat([reduced, other], 0)
reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced))
other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
permuted = array_ops.transpose(op.inputs[0], perm)
permuted_shape = array_ops.shape(permuted)
reshaped = array_ops.reshape(permuted, (reduced_num, other_num))
# Calculate product, leaving out the current entry
left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
y = array_ops.reshape(left * right, permuted_shape)
# Invert the transpose and reshape operations.
# Make sure to set the statically known shape information through a reshape.
out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm))
return array_ops.reshape(out, input_shape), None
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:45,代碼來源:math_grad.py