當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.sequence_mask方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.sequence_mask方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.sequence_mask方法的具體用法?Python array_ops.sequence_mask怎麽用?Python array_ops.sequence_mask使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.sequence_mask方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: advanced_reduce_sum

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def advanced_reduce_sum(values, values_length, axis):
    """ Reudces sum at `axis`.

    Args:
        values: A tensor with shape [batch, time, dim] or [time, batch, dim]
        values_length: A tensor with shape [batch,]
        axis: The axis indicating time, 0/1.

    Returns: The reduced tensor with shape [batch, dim]
    """
    # [batch_size, time]
    mask = array_ops.sequence_mask(
        lengths=values_length,
        maxlen=array_ops.shape(values)[axis],
        dtype=dtypes.float32)
    if axis == 0:
        mask = array_ops.transpose(mask, perm=[1, 0])
    masked_values = values * array_ops.expand_dims(mask, axis=2)
    return math_ops.reduce_sum(masked_values, axis=axis) 
開發者ID:zhaocq-nlp,項目名稱:NJUNMT-tf,代碼行數:21,代碼來源:algebra_ops.py

示例2: _cdf

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def _cdf(self, k):
    k = ops.convert_to_tensor(k, name="k")
    if self.validate_args:
      k = distribution_util.embed_check_integer_casting_closed(
          k, target_dtype=dtypes.int32)

    k, probs = _broadcast_cat_event_and_params(
        k, self.probs, base_dtype=self.dtype.base_dtype)

    # batch-flatten everything in order to use `sequence_mask()`.
    batch_flattened_probs = array_ops.reshape(probs,
                                              (-1, self._event_size))
    batch_flattened_k = array_ops.reshape(k, [-1])

    to_sum_over = array_ops.where(
        array_ops.sequence_mask(batch_flattened_k, self._event_size),
        batch_flattened_probs,
        array_ops.zeros_like(batch_flattened_probs))
    batch_flattened_cdf = math_ops.reduce_sum(to_sum_over, axis=-1)
    # Reshape back to the shape of the argument.
    return array_ops.reshape(batch_flattened_cdf, array_ops.shape(k)) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:categorical.py

示例3: _maybe_mask_score

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
  if memory_sequence_length is None:
    return score
  message = ("All values in memory_sequence_length must greater than zero.")
  with ops.control_dependencies(
      [check_ops.assert_positive(memory_sequence_length, message=message)]):
    score_mask = array_ops.sequence_mask(
        memory_sequence_length, maxlen=array_ops.shape(score)[1])
    score_mask_values = score_mask_value * array_ops.ones_like(score)
    return array_ops.where(score_mask, score, score_mask_values) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:attention_wrapper.py

示例4: mask_activations_and_labels

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def mask_activations_and_labels(activations, labels, sequence_lengths):
  """Remove entries outside `sequence_lengths` and returned flattened results.

  Args:
    activations: Output of the RNN, shape `[batch_size, padded_length, k]`.
    labels: Label values, shape `[batch_size, padded_length]`.
    sequence_lengths: A `Tensor` of shape `[batch_size]` with the unpadded
      length of each sequence. If `None`, then each sequence is unpadded.

  Returns:
    activations_masked: `logit` values with those beyond `sequence_lengths`
      removed for each batch. Batches are then concatenated. Shape
      `[tf.sum(sequence_lengths), k]` if `sequence_lengths` is not `None` and
      shape `[batch_size * padded_length, k]` otherwise.
    labels_masked: Label values after removing unneeded entries. Shape
      `[tf.sum(sequence_lengths)]` if `sequence_lengths` is not `None` and shape
      `[batch_size * padded_length]` otherwise.
  """
  with ops.name_scope(
      'mask_activations_and_labels',
      values=[activations, labels, sequence_lengths]):
    labels_shape = array_ops.shape(labels)
    batch_size = labels_shape[0]
    padded_length = labels_shape[1]
    if sequence_lengths is None:
      flattened_dimension = padded_length * batch_size
      activations_masked = array_ops.reshape(activations,
                                             [flattened_dimension, -1])
      labels_masked = array_ops.reshape(labels, [flattened_dimension])
    else:
      mask = array_ops.sequence_mask(sequence_lengths, padded_length)
      activations_masked = array_ops.boolean_mask(activations, mask)
      labels_masked = array_ops.boolean_mask(labels, mask)
    return activations_masked, labels_masked 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:rnn_common.py

示例5: mask_activations_and_labels

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def mask_activations_and_labels(activations, labels, sequence_lengths):
  """Remove entries outside `sequence_lengths` and returned flattened results.

  Args:
    activations: Output of the RNN, shape `[batch_size, padded_length, k]`.
    labels: Label values, shape `[batch_size, padded_length]`.
    sequence_lengths: A `Tensor` of shape `[batch_size]` with the unpadded
      length of each sequence. If `None`, then each sequence is unpadded.

  Returns:
    activations_masked: `logit` values with those beyond `sequence_lengths`
      removed for each batch. Batches are then concatenated. Shape
      `[tf.sum(sequence_lengths), k]` if `sequence_lengths` is not `None` and
      shape `[batch_size * padded_length, k]` otherwise.
    labels_masked: Label values after removing unneeded entries. Shape
      `[tf.sum(sequence_lengths)]` if `sequence_lengths` is not `None` and shape
      `[batch_size * padded_length]` otherwise.
  """
  with ops.name_scope('mask_activations_and_labels',
                      values=[activations, labels, sequence_lengths]):
    labels_shape = array_ops.shape(labels)
    batch_size = labels_shape[0]
    padded_length = labels_shape[1]
    if sequence_lengths is None:
      flattened_dimension = padded_length * batch_size
      activations_masked = array_ops.reshape(activations,
                                             [flattened_dimension, -1])
      labels_masked = array_ops.reshape(labels, [flattened_dimension])
    else:
      mask = array_ops.sequence_mask(sequence_lengths, padded_length)
      activations_masked = array_ops.boolean_mask(activations, mask)
      labels_masked = array_ops.boolean_mask(labels, mask)
    return activations_masked, labels_masked 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:35,代碼來源:dynamic_rnn_estimator.py

示例6: _maybe_mask_score

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
    if memory_sequence_length is None:
        return score
    message = ("All values in memory_sequence_length must greater than zero.")
    with ops.control_dependencies(
            [check_ops.assert_positive(memory_sequence_length, message=message)]):
        score_mask = array_ops.sequence_mask(
            memory_sequence_length, maxlen=array_ops.shape(score)[1])
        score_mask_values = score_mask_value * array_ops.ones_like(score)
        return array_ops.where(score_mask, score, score_mask_values) 
開發者ID:HareeshBahuleyan,項目名稱:tf-var-attention,代碼行數:12,代碼來源:attention_wrapper.py

示例7: _maybe_mask_score

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
  if memory_sequence_length is None:
    return score
  message = ("All values in memory_sequence_length must greater than zero.")
  with ops.control_dependencies(
      [check_ops.assert_positive(memory_sequence_length, message=message)]
  ):
    score_mask = array_ops.sequence_mask(
        memory_sequence_length, maxlen=array_ops.shape(score)[1]
    )
    score_mask_values = score_mask_value * array_ops.ones_like(score)
    return array_ops.where(score_mask, score, score_mask_values) 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:14,代碼來源:attention_wrapper.py

示例8: _prepare_memory

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
  """Convert to tensor and possibly mask `memory`.

  Args:
    memory: `Tensor`, shaped `[batch_size, max_time, ...]`.
    memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
    check_inner_dims_defined: Python boolean.  If `True`, the `memory`
      argument's shape is checked to ensure all but the two outermost
      dimensions are fully defined.

  Returns:
    A (possibly masked), checked, new `memory`.

  Raises:
    ValueError: If `check_inner_dims_defined` is `True` and not
      `memory.shape[2:].is_fully_defined()`.
  """
  memory = nest.map_structure(
      lambda m: ops.convert_to_tensor(m, name="memory"), memory)
  if memory_sequence_length is not None:
    memory_sequence_length = ops.convert_to_tensor(
        memory_sequence_length, name="memory_sequence_length")
  if check_inner_dims_defined:
    def _check_dims(m):
      if not m.get_shape()[2:].is_fully_defined():
        raise ValueError("Expected memory %s to have fully defined inner dims, "
                         "but saw shape: %s" % (m.name, m.get_shape()))
    nest.map_structure(_check_dims, memory)
  if memory_sequence_length is None:
    seq_len_mask = None
  else:
    seq_len_mask = array_ops.sequence_mask(
        memory_sequence_length,
        maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
        dtype=nest.flatten(memory)[0].dtype)
    seq_len_batch_size = (
        memory_sequence_length.shape[0].value
        or array_ops.shape(memory_sequence_length)[0])
  def _maybe_mask(m, seq_len_mask):
    rank = m.get_shape().ndims
    rank = rank if rank is not None else array_ops.rank(m)
    extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
    m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
    if memory_sequence_length is not None:
      message = ("memory_sequence_length and memory tensor batch sizes do not "
                 "match.")
      with ops.control_dependencies([
          check_ops.assert_equal(
              seq_len_batch_size, m_batch_size, message=message)]):
        seq_len_mask = array_ops.reshape(
            seq_len_mask,
            array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
        return m * seq_len_mask
    else:
      return m
  return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:58,代碼來源:attention_wrapper.py

示例9: _prepare_memory

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 別名]
def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
    """Convert to tensor and possibly mask `memory`.

    Args:
      memory: `Tensor`, shaped `[batch_size, max_time, ...]`.
      memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
      check_inner_dims_defined: Python boolean.  If `True`, the `memory`
        argument's shape is checked to ensure all but the two outermost
        dimensions are fully defined.

    Returns:
      A (possibly masked), checked, new `memory`.

    Raises:
      ValueError: If `check_inner_dims_defined` is `True` and not
        `memory.shape[2:].is_fully_defined()`.
    """
    memory = nest.map_structure(
        lambda m: ops.convert_to_tensor(m, name="memory"), memory)
    if memory_sequence_length is not None:
        memory_sequence_length = ops.convert_to_tensor(
            memory_sequence_length, name="memory_sequence_length")
    if check_inner_dims_defined:
        def _check_dims(m):
            if not m.get_shape()[2:].is_fully_defined():
                raise ValueError("Expected memory %s to have fully defined inner dims, "
                                 "but saw shape: %s" % (m.name, m.get_shape()))

        nest.map_structure(_check_dims, memory)
    if memory_sequence_length is None:
        seq_len_mask = None
    else:
        seq_len_mask = array_ops.sequence_mask(
            memory_sequence_length,
            maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
            dtype=nest.flatten(memory)[0].dtype)
        seq_len_batch_size = (
                memory_sequence_length.shape[0].value
                or array_ops.shape(memory_sequence_length)[0])

    def _maybe_mask(m, seq_len_mask):
        rank = m.get_shape().ndims
        rank = rank if rank is not None else array_ops.rank(m)
        extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
        m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
        if memory_sequence_length is not None:
            message = ("memory_sequence_length and memory tensor batch sizes do not "
                       "match.")
            with ops.control_dependencies([
                check_ops.assert_equal(
                    seq_len_batch_size, m_batch_size, message=message)]):
                seq_len_mask = array_ops.reshape(
                    seq_len_mask,
                    array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
                return m * seq_len_mask
        else:
            return m

    return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory) 
開發者ID:HareeshBahuleyan,項目名稱:tf-var-attention,代碼行數:61,代碼來源:attention_wrapper.py


注:本文中的tensorflow.python.ops.array_ops.sequence_mask方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。