本文整理匯總了Python中tensorflow.python.ops.array_ops.scatter_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.scatter_nd方法的具體用法?Python array_ops.scatter_nd怎麽用?Python array_ops.scatter_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.scatter_nd方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scheduled_sampling
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
with variable_scope.variable_scope("ScheduledEmbedding"):
# Return -1s where we do not sample, and sample_ids elsewhere
select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
select_sample = select_sampler.sample(sample_shape=batch_size)
sample_ids = array_ops.where(
select_sample,
tf.range(batch_size),
gen_array_ops.fill([batch_size], -1))
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), tf.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), tf.int32)
_estimate = array_ops.gather_nd(estimate, where_sampling)
_true = array_ops.gather_nd(true, where_not_sampling)
base_shape = array_ops.shape(true)
result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
result = result1 + result2
return result1 + result2
示例2: _GatherNdGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def _GatherNdGrad(op, grad):
ref = op.inputs[0]
indices = op.inputs[1]
ref_shape = array_ops.shape(ref, out_type=indices.dtype)
ref_grad = array_ops.scatter_nd(indices, grad, ref_shape)
return [ref_grad, None]
示例3: next_inputs
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
def maybe_sample():
"""Perform scheduled sampling."""
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), dtypes.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), dtypes.int32)
where_sampling_flat = array_ops.reshape(where_sampling, [-1])
where_not_sampling_flat = array_ops.reshape(where_not_sampling, [-1])
sample_ids_sampling = array_ops.gather(sample_ids, where_sampling_flat)
inputs_not_sampling = array_ops.gather(
base_next_inputs, where_not_sampling_flat)
sampled_next_inputs = self._embedding_fn(sample_ids_sampling)
base_shape = array_ops.shape(base_next_inputs)
return (array_ops.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ array_ops.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished, lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)
示例4: _GatherNdGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def _GatherNdGrad(op, grad):
ref = op.inputs[0]
ref_shape = array_ops.shape(ref)
indices = op.inputs[1]
ref_grad = array_ops.scatter_nd(indices, grad, ref_shape)
return [ref_grad, None]
示例5: next_inputs
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
def maybe_sample():
"""Perform scheduled sampling."""
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), dtypes.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), dtypes.int32)
sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
inputs_not_sampling = array_ops.gather_nd(
base_next_inputs, where_not_sampling)
sampled_next_inputs = self._embedding_fn(sample_ids_sampling)
base_shape = array_ops.shape(base_next_inputs)
return (array_ops.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ array_ops.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished, lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)
示例6: __call__
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
del partition_info # unused
assert len(shape) > 2, shape
support = tuple(shape[:-2]) + (1, 1)
indices = [[s // 2 for s in support]]
updates = array_ops.constant([self.gain], dtype=dtype)
kernel = array_ops.scatter_nd(indices, updates, support)
assert shape[-2] == shape[-1], shape
if shape[-1] != 1:
kernel *= linalg_ops.eye(shape[-1], dtype=dtype)
return kernel
示例7: _calc_final_dist
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def _calc_final_dist(_hps, v_size, _max_art_oovs, _enc_batch_extend_vocab, p_gen, vocab_dist, attn_dist):
"""Calculate the final distribution, for the pointer-generator model
Args:
vocab_dists: The vocabulary distributions. List length max_dec_steps of (batch_size, vsize) arrays. The words are in the order they appear in the vocabulary file.
attn_dists: The attention distributions. List length max_dec_steps of (batch_size, max_enc_steps) arrays
Returns:
final_dists: The final distributions. List length max_dec_steps of (batch_size, extended_vsize) arrays.
"""
with tf.variable_scope('final_distribution'):
# Multiply vocab dists by p_gen and attention dists by (1-p_gen)
vocab_dist = p_gen * vocab_dist
attn_dist = (1-p_gen) * attn_dist
# Concatenate some zeros to each vocabulary dist, to hold the probabilities for in-article OOV words
extended_vsize = v_size + _max_art_oovs # the maximum (over the batch) size of the extended vocabulary
extra_zeros = tf.zeros((_hps.batch_size, _max_art_oovs))
vocab_dists_extended = tf.concat(axis=1, values=[vocab_dist, extra_zeros]) # list length max_dec_steps of shape (batch_size, extended_vsize)
# Project the values in the attention distributions onto the appropriate entries in the final distributions
# This means that if a_i = 0.1 and the ith encoder word is w, and w has index 500 in the vocabulary, then we add 0.1 onto the 500th entry of the final distribution
# This is done for each decoder timestep.
# This is fiddly; we use tf.scatter_nd to do the projection
batch_nums = tf.range(0, limit=_hps.batch_size) # shape (batch_size)
batch_nums = tf.expand_dims(batch_nums, 1) # shape (batch_size, 1)
attn_len = tf.shape(_enc_batch_extend_vocab)[1] # number of states we attend over
batch_nums = tf.tile(batch_nums, [1, attn_len]) # shape (batch_size, attn_len)
indices = tf.stack( (batch_nums, _enc_batch_extend_vocab), axis=2) # shape (batch_size, enc_t, 2)
shape = [_hps.batch_size, extended_vsize]
attn_dists_projected = tf.scatter_nd(indices, attn_dist, shape) # list length max_dec_steps (batch_size, extended_vsize)
# Add the vocab distributions and the copy distributions together to get the final distributions
# final_dists is a list length max_dec_steps; each entry is a tensor shape (batch_size, extended_vsize) giving the final distribution for that decoder timestep
# Note that for decoder timesteps and examples corresponding to a [PAD] token, this is junk - ignore.
final_dist = vocab_dists_extended + attn_dists_projected
final_dist +=1e-15 # for cases where we have zero in the final dist, especially for oov words
dist_sums = tf.reduce_sum(final_dist, axis=1)
final_dist = final_dist / tf.reshape(dist_sums, [-1, 1]) # re-normalize
return final_dist
# Note: this function is based on tf.contrib.legacy_seq2seq_attention_decoder, which is now outdated.
# In the future, it would make more sense to write variants on the attention mechanism using the new seq2seq library for tensorflow 1.0: https://www.tensorflow.org/api_guides/python/contrib.seq2seq#Attention
示例8: next_inputs
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
"""Gets the outputs for next step."""
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
def maybe_sample():
"""Perform scheduled sampling."""
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), dtypes.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), dtypes.int32)
sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
inputs_not_sampling = array_ops.gather_nd(
base_next_inputs, where_not_sampling)
if self._embedding_args_cnt == 1:
sampled_next_inputs = self._embedding_fn(
sample_ids_sampling)
elif self._embedding_args_cnt == 2:
# Prepare the position embedding of the next step
times = tf.ones(self._batch_size, dtype=tf.int32) * (time+1)
sampled_next_inputs = self._embedding_fn(
sample_ids_sampling, times)
base_shape = array_ops.shape(base_next_inputs)
return (array_ops.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ array_ops.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished, lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)
示例9: next_inputs
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
"""Gets the outputs for next step."""
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
def maybe_sample():
"""Perform scheduled sampling."""
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), dtypes.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), dtypes.int32)
sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
inputs_not_sampling = array_ops.gather_nd(
base_next_inputs, where_not_sampling)
if self._embedding_args_cnt == 1:
sampled_next_inputs = self._embedding_fn(
sample_ids_sampling)
elif self._embedding_args_cnt == 2:
# Prepare the position embedding of the next step
times = tf.ones(self._batch_size,
dtype=tf.int32) * (time + 1)
sampled_next_inputs = self._embedding_fn(
sample_ids_sampling, times)
base_shape = array_ops.shape(base_next_inputs)
return (array_ops.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ array_ops.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished, lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)