當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.scatter_nd方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.scatter_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.scatter_nd方法的具體用法?Python array_ops.scatter_nd怎麽用?Python array_ops.scatter_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.scatter_nd方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: scheduled_sampling

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
    with variable_scope.variable_scope("ScheduledEmbedding"):
      # Return -1s where we do not sample, and sample_ids elsewhere
      select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
      select_sample = select_sampler.sample(sample_shape=batch_size)
      sample_ids = array_ops.where(
                  select_sample,
                  tf.range(batch_size),
                  gen_array_ops.fill([batch_size], -1))
      where_sampling = math_ops.cast(
          array_ops.where(sample_ids > -1), tf.int32)
      where_not_sampling = math_ops.cast(
          array_ops.where(sample_ids <= -1), tf.int32)
      _estimate = array_ops.gather_nd(estimate, where_sampling)
      _true = array_ops.gather_nd(true, where_not_sampling)

      base_shape = array_ops.shape(true)
      result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
      result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
      result = result1 + result2
      return result1 + result2 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:23,代碼來源:run_summarization.py

示例2: _GatherNdGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def _GatherNdGrad(op, grad):
  ref = op.inputs[0]
  indices = op.inputs[1]
  ref_shape = array_ops.shape(ref, out_type=indices.dtype)
  ref_grad = array_ops.scatter_nd(indices, grad, ref_shape)
  return [ref_grad, None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:array_grad.py

示例3: next_inputs

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
    with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
                        [time, outputs, state, sample_ids]):
      (finished, base_next_inputs, state) = (
          super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
              time=time,
              outputs=outputs,
              state=state,
              sample_ids=sample_ids,
              name=name))

      def maybe_sample():
        """Perform scheduled sampling."""
        where_sampling = math_ops.cast(
            array_ops.where(sample_ids > -1), dtypes.int32)
        where_not_sampling = math_ops.cast(
            array_ops.where(sample_ids <= -1), dtypes.int32)
        where_sampling_flat = array_ops.reshape(where_sampling, [-1])
        where_not_sampling_flat = array_ops.reshape(where_not_sampling, [-1])
        sample_ids_sampling = array_ops.gather(sample_ids, where_sampling_flat)
        inputs_not_sampling = array_ops.gather(
            base_next_inputs, where_not_sampling_flat)
        sampled_next_inputs = self._embedding_fn(sample_ids_sampling)
        base_shape = array_ops.shape(base_next_inputs)
        return (array_ops.scatter_nd(indices=where_sampling,
                                     updates=sampled_next_inputs,
                                     shape=base_shape)
                + array_ops.scatter_nd(indices=where_not_sampling,
                                       updates=inputs_not_sampling,
                                       shape=base_shape))

      all_finished = math_ops.reduce_all(finished)
      next_inputs = control_flow_ops.cond(
          all_finished, lambda: base_next_inputs, maybe_sample)
      return (finished, next_inputs, state) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:37,代碼來源:helper.py

示例4: _GatherNdGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def _GatherNdGrad(op, grad):
  ref = op.inputs[0]
  ref_shape = array_ops.shape(ref)
  indices = op.inputs[1]
  ref_grad = array_ops.scatter_nd(indices, grad, ref_shape)
  return [ref_grad, None] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:array_grad.py

示例5: next_inputs

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
    with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
                        [time, outputs, state, sample_ids]):
      (finished, base_next_inputs, state) = (
          super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
              time=time,
              outputs=outputs,
              state=state,
              sample_ids=sample_ids,
              name=name))

      def maybe_sample():
        """Perform scheduled sampling."""
        where_sampling = math_ops.cast(
            array_ops.where(sample_ids > -1), dtypes.int32)
        where_not_sampling = math_ops.cast(
            array_ops.where(sample_ids <= -1), dtypes.int32)
        sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
        inputs_not_sampling = array_ops.gather_nd(
            base_next_inputs, where_not_sampling)
        sampled_next_inputs = self._embedding_fn(sample_ids_sampling)
        base_shape = array_ops.shape(base_next_inputs)
        return (array_ops.scatter_nd(indices=where_sampling,
                                     updates=sampled_next_inputs,
                                     shape=base_shape)
                + array_ops.scatter_nd(indices=where_not_sampling,
                                       updates=inputs_not_sampling,
                                       shape=base_shape))

      all_finished = math_ops.reduce_all(finished)
      next_inputs = control_flow_ops.cond(
          all_finished, lambda: base_next_inputs, maybe_sample)
      return (finished, next_inputs, state) 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:35,代碼來源:helper.py

示例6: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
    del partition_info  # unused
    assert len(shape) > 2, shape

    support = tuple(shape[:-2]) + (1, 1)
    indices = [[s // 2 for s in support]]
    updates = array_ops.constant([self.gain], dtype=dtype)
    kernel = array_ops.scatter_nd(indices, updates, support)

    assert shape[-2] == shape[-1], shape
    if shape[-1] != 1:
      kernel *= linalg_ops.eye(shape[-1], dtype=dtype)

    return kernel 
開發者ID:mauriceqch,項目名稱:pcc_geo_cnn,代碼行數:16,代碼來源:initializers.py

示例7: _calc_final_dist

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def _calc_final_dist(_hps, v_size, _max_art_oovs, _enc_batch_extend_vocab, p_gen, vocab_dist, attn_dist):
  """Calculate the final distribution, for the pointer-generator model
  Args:
    vocab_dists: The vocabulary distributions. List length max_dec_steps of (batch_size, vsize) arrays. The words are in the order they appear in the vocabulary file.
    attn_dists: The attention distributions. List length max_dec_steps of (batch_size, max_enc_steps) arrays

  Returns:
    final_dists: The final distributions. List length max_dec_steps of (batch_size, extended_vsize) arrays.
  """
  with tf.variable_scope('final_distribution'):
    # Multiply vocab dists by p_gen and attention dists by (1-p_gen)
    vocab_dist = p_gen * vocab_dist
    attn_dist = (1-p_gen) * attn_dist

    # Concatenate some zeros to each vocabulary dist, to hold the probabilities for in-article OOV words
    extended_vsize = v_size + _max_art_oovs # the maximum (over the batch) size of the extended vocabulary
    extra_zeros = tf.zeros((_hps.batch_size, _max_art_oovs))
    vocab_dists_extended = tf.concat(axis=1, values=[vocab_dist, extra_zeros]) # list length max_dec_steps of shape (batch_size, extended_vsize)

    # Project the values in the attention distributions onto the appropriate entries in the final distributions
    # This means that if a_i = 0.1 and the ith encoder word is w, and w has index 500 in the vocabulary, then we add 0.1 onto the 500th entry of the final distribution
    # This is done for each decoder timestep.
    # This is fiddly; we use tf.scatter_nd to do the projection
    batch_nums = tf.range(0, limit=_hps.batch_size) # shape (batch_size)
    batch_nums = tf.expand_dims(batch_nums, 1) # shape (batch_size, 1)
    attn_len = tf.shape(_enc_batch_extend_vocab)[1] # number of states we attend over
    batch_nums = tf.tile(batch_nums, [1, attn_len]) # shape (batch_size, attn_len)
    indices = tf.stack( (batch_nums, _enc_batch_extend_vocab), axis=2) # shape (batch_size, enc_t, 2)
    shape = [_hps.batch_size, extended_vsize]
    attn_dists_projected = tf.scatter_nd(indices, attn_dist, shape) # list length max_dec_steps (batch_size, extended_vsize)

    # Add the vocab distributions and the copy distributions together to get the final distributions
    # final_dists is a list length max_dec_steps; each entry is a tensor shape (batch_size, extended_vsize) giving the final distribution for that decoder timestep
    # Note that for decoder timesteps and examples corresponding to a [PAD] token, this is junk - ignore.
    final_dist = vocab_dists_extended + attn_dists_projected
    final_dist +=1e-15 # for cases where we have zero in the final dist, especially for oov words
    dist_sums = tf.reduce_sum(final_dist, axis=1)
    final_dist = final_dist / tf.reshape(dist_sums, [-1, 1]) # re-normalize

  return final_dist

# Note: this function is based on tf.contrib.legacy_seq2seq_attention_decoder, which is now outdated.
# In the future, it would make more sense to write variants on the attention mechanism using the new seq2seq library for tensorflow 1.0: https://www.tensorflow.org/api_guides/python/contrib.seq2seq#Attention 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:45,代碼來源:attention_decoder.py

示例8: next_inputs

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
        """Gets the outputs for next step."""
        with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
                            [time, outputs, state, sample_ids]):
            (finished, base_next_inputs, state) = (
                super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
                    time=time,
                    outputs=outputs,
                    state=state,
                    sample_ids=sample_ids,
                    name=name))

            def maybe_sample():
                """Perform scheduled sampling."""
                where_sampling = math_ops.cast(
                    array_ops.where(sample_ids > -1), dtypes.int32)
                where_not_sampling = math_ops.cast(
                    array_ops.where(sample_ids <= -1), dtypes.int32)
                sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
                inputs_not_sampling = array_ops.gather_nd(
                    base_next_inputs, where_not_sampling)

                if self._embedding_args_cnt == 1:
                    sampled_next_inputs = self._embedding_fn(
                        sample_ids_sampling)
                elif self._embedding_args_cnt == 2:
                    # Prepare the position embedding of the next step
                    times = tf.ones(self._batch_size, dtype=tf.int32) * (time+1)
                    sampled_next_inputs = self._embedding_fn(
                        sample_ids_sampling, times)
                base_shape = array_ops.shape(base_next_inputs)
                return (array_ops.scatter_nd(indices=where_sampling,
                                             updates=sampled_next_inputs,
                                             shape=base_shape)
                        + array_ops.scatter_nd(indices=where_not_sampling,
                                               updates=inputs_not_sampling,
                                               shape=base_shape))

            all_finished = math_ops.reduce_all(finished)
            next_inputs = control_flow_ops.cond(
                all_finished, lambda: base_next_inputs, maybe_sample)
            return (finished, next_inputs, state) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:44,代碼來源:tf_helpers.py

示例9: next_inputs

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
        """Gets the outputs for next step."""
        with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
                            [time, outputs, state, sample_ids]):
            (finished, base_next_inputs, state) = (
                super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
                    time=time,
                    outputs=outputs,
                    state=state,
                    sample_ids=sample_ids,
                    name=name))

            def maybe_sample():
                """Perform scheduled sampling."""
                where_sampling = math_ops.cast(
                    array_ops.where(sample_ids > -1), dtypes.int32)
                where_not_sampling = math_ops.cast(
                    array_ops.where(sample_ids <= -1), dtypes.int32)
                sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
                inputs_not_sampling = array_ops.gather_nd(
                    base_next_inputs, where_not_sampling)

                if self._embedding_args_cnt == 1:
                    sampled_next_inputs = self._embedding_fn(
                        sample_ids_sampling)
                elif self._embedding_args_cnt == 2:
                    # Prepare the position embedding of the next step
                    times = tf.ones(self._batch_size,
                                    dtype=tf.int32) * (time + 1)
                    sampled_next_inputs = self._embedding_fn(
                        sample_ids_sampling, times)
                base_shape = array_ops.shape(base_next_inputs)
                return (array_ops.scatter_nd(indices=where_sampling,
                                             updates=sampled_next_inputs,
                                             shape=base_shape)
                        + array_ops.scatter_nd(indices=where_not_sampling,
                                               updates=inputs_not_sampling,
                                               shape=base_shape))

            all_finished = math_ops.reduce_all(finished)
            next_inputs = control_flow_ops.cond(
                all_finished, lambda: base_next_inputs, maybe_sample)
            return (finished, next_inputs, state) 
開發者ID:asyml,項目名稱:texar,代碼行數:45,代碼來源:tf_helpers.py


注:本文中的tensorflow.python.ops.array_ops.scatter_nd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。