當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.required_space_to_batch_paddings方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.required_space_to_batch_paddings方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.required_space_to_batch_paddings方法的具體用法?Python array_ops.required_space_to_batch_paddings怎麽用?Python array_ops.required_space_to_batch_paddings使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.required_space_to_batch_paddings方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _with_space_to_batch_call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import required_space_to_batch_paddings [as 別名]
def _with_space_to_batch_call(self, inp, filter):  # pylint: disable=redefined-builtin
    """Call functionality for with_space_to_batch."""
    # Handle input whose shape is unknown during graph creation.
    input_spatial_shape = None
    input_shape = self.input_shape
    spatial_dims = self.spatial_dims
    if input_shape.ndims is not None:
      input_shape_list = input_shape.as_list()
      input_spatial_shape = [input_shape_list[i] for i in spatial_dims]
    if input_spatial_shape is None or None in input_spatial_shape:
      input_shape_tensor = array_ops.shape(inp)
      input_spatial_shape = array_ops.stack(
          [input_shape_tensor[i] for i in spatial_dims])

    base_paddings = self.base_paddings
    if base_paddings is None:
      # base_paddings could not be computed at build time since static filter
      # shape was not fully defined.
      filter_shape = array_ops.shape(filter)
      base_paddings = _with_space_to_batch_base_paddings(
          filter_shape,
          self.num_spatial_dims,
          self.rate_or_const_rate)
    paddings, crops = array_ops.required_space_to_batch_paddings(
        input_shape=input_spatial_shape,
        base_paddings=base_paddings,
        block_shape=self.dilation_rate)

    dilation_rate = _with_space_to_batch_adjust(self.dilation_rate, 1,
                                                spatial_dims)
    paddings = _with_space_to_batch_adjust(paddings, 0, spatial_dims)
    crops = _with_space_to_batch_adjust(crops, 0, spatial_dims)
    input_converted = array_ops.space_to_batch_nd(
        input=inp,
        block_shape=dilation_rate,
        paddings=paddings)

    result = self.op(input_converted, filter)

    result_converted = array_ops.batch_to_space_nd(
        input=result, block_shape=dilation_rate, crops=crops)
    return result_converted 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:44,代碼來源:nn_ops.py


注:本文中的tensorflow.python.ops.array_ops.required_space_to_batch_paddings方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。