本文整理匯總了Python中tensorflow.python.ops.array_ops.placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.placeholder方法的具體用法?Python array_ops.placeholder怎麽用?Python array_ops.placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.placeholder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _save_checkpoint_from_mock_model
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def _save_checkpoint_from_mock_model(self,
checkpoint_path,
use_moving_averages,
enable_quantization=False):
g = tf.Graph()
with g.as_default():
mock_model = FakeModel()
preprocessed_inputs, true_image_shapes = mock_model.preprocess(
tf.placeholder(tf.float32, shape=[None, None, None, 3]))
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
mock_model.postprocess(predictions, true_image_shapes)
if use_moving_averages:
tf.train.ExponentialMovingAverage(0.0).apply()
tf.train.get_or_create_global_step()
if enable_quantization:
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init)
saver.save(sess, checkpoint_path)
示例2: test_rewrite_nn_resize_op
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def test_rewrite_nn_resize_op(self):
g = tf.Graph()
with g.as_default():
x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
s = ops.nearest_neighbor_upsampling(x, 2)
t = s + y
exporter.rewrite_nn_resize_op()
resize_op_found = False
for op in g.get_operations():
if op.type == 'ResizeNearestNeighbor':
resize_op_found = True
self.assertEqual(op.inputs[0], x)
self.assertEqual(op.outputs[0].consumers()[0], t.op)
break
self.assertTrue(resize_op_found)
示例3: delete_session_tensor
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def delete_session_tensor(handle, name=None):
"""Delete the tensor for the given tensor handle.
This is EXPERIMENTAL and subject to change.
Delete the tensor of a given tensor handle. The tensor is produced
in a previous run() and stored in the state of the session.
Args:
handle: The string representation of a persistent tensor handle.
name: Optional name prefix for the return tensor.
Returns:
A pair of graph elements. The first is a placeholder for feeding a
tensor handle and the second is a deletion operation.
"""
handle_device = TensorHandle._get_device_name(handle)
with ops.device(handle_device):
holder = array_ops.placeholder(dtypes.string)
deleter = gen_data_flow_ops._delete_session_tensor(holder, name=name)
return (holder, deleter)
示例4: create_op
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def create_op(self, op_type, inputs, data_types, **kwargs):
for i, x in enumerate(inputs):
if x.graph is not self:
# Referring to a tensor from other graph.
if x in self._captured:
# Captured already.
inputs[i] = self._captured[x]
else:
# Substitute with a placeholder.
self.extra_inputs.append(x)
ph = array_ops.placeholder(x.dtype, shape=x.get_shape())
# pylint: disable=protected-access
ph._handle_shape = x._handle_shape
ph._handle_dtype = x._handle_dtype
# pylint: enable=protected-access
inputs[i] = ph
self._captured[x] = ph
self.extra_args.append(ph)
return super(_FuncGraph, self).create_op(op_type, inputs, data_types,
**kwargs)
示例5: is_sparse
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def is_sparse(tensor):
"""Returns whether a tensor is a sparse tensor.
Arguments:
tensor: A tensor instance.
Returns:
A boolean.
Example:
```python
>>> from keras import backend as K
>>> a = K.placeholder((2, 2), sparse=False)
>>> print(K.is_sparse(a))
False
>>> b = K.placeholder((2, 2), sparse=True)
>>> print(K.is_sparse(b))
True
```
"""
return isinstance(tensor, sparse_tensor.SparseTensor)
示例6: to_dense
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def to_dense(tensor):
"""Converts a sparse tensor into a dense tensor and returns it.
Arguments:
tensor: A tensor instance (potentially sparse).
Returns:
A dense tensor.
Examples:
```python
>>> from keras import backend as K
>>> b = K.placeholder((2, 2), sparse=True)
>>> print(K.is_sparse(b))
True
>>> c = K.to_dense(b)
>>> print(K.is_sparse(c))
False
```
"""
if is_sparse(tensor):
return sparse_ops.sparse_tensor_to_dense(tensor)
else:
return tensor
示例7: ndim
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def ndim(x):
"""Returns the number of axes in a tensor, as an integer.
Arguments:
x: Tensor or variable.
Returns:
Integer (scalar), number of axes.
Examples:
```python
>>> from keras import backend as K
>>> input = K.placeholder(shape=(2, 4, 5))
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val)
>>> K.ndim(input)
3
>>> K.ndim(kvar)
2
```
"""
dims = x.get_shape()._dims
if dims is not None:
return len(dims)
return None
示例8: set_value
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def set_value(x, value):
"""Sets the value of a variable, from a Numpy array.
Arguments:
x: Tensor to set to a new value.
value: Value to set the tensor to, as a Numpy array
(of the same shape).
"""
value = np.asarray(value)
tf_dtype = _convert_string_dtype(x.dtype.name.split('_')[0])
if hasattr(x, '_assign_placeholder'):
assign_placeholder = x._assign_placeholder
assign_op = x._assign_op
else:
assign_placeholder = array_ops.placeholder(tf_dtype, shape=value.shape)
assign_op = x.assign(assign_placeholder)
x._assign_placeholder = assign_placeholder
x._assign_op = assign_op
get_session().run(assign_op, feed_dict={assign_placeholder: value})
示例9: function
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def function(inputs, outputs, updates=None, **kwargs):
"""Instantiates a Keras function.
Arguments:
inputs: List of placeholder tensors.
outputs: List of output tensors.
updates: List of update ops.
**kwargs: Not used with TensorFlow.
Returns:
Output values as Numpy arrays.
"""
if kwargs:
msg = [
'Expected no kwargs, you passed %s' % len(kwargs),
'kwargs passed to function are ignored with Tensorflow backend'
]
warnings.warn('\n'.join(msg))
return Function(inputs, outputs, updates=updates)
示例10: create_op
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def create_op(self, op_type, inputs, data_types, **kwargs):
for i, x in enumerate(inputs):
if x.graph is not self:
# Referring to a tensor from other graph.
if x in self._captured:
# Captured already.
inputs[i] = self._captured[x]
elif self._capture_by_value:
inputs[i] = self._add_tensor_and_parents(x)
else:
# Substitute with a placeholder.
self.extra_inputs.append(x)
ph = array_ops.placeholder(x.dtype, shape=x.get_shape())
# pylint: disable=protected-access
ph._handle_shape = x._handle_shape
ph._handle_dtype = x._handle_dtype
# pylint: enable=protected-access
inputs[i] = ph
self._captured[x] = ph
self.extra_args.append(ph)
return super(_ExperimentalFuncGraph, self).create_op(op_type, inputs,
data_types, **kwargs)
示例11: _add_op_and_parents
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def _add_op_and_parents(self, op):
op_def = function._get_op_def(op)
if op_def.is_stateful:
raise ValueError("Cannot capture a stateful node by value.")
elif op.type in ("Placeholder", "PlaceholderV2"):
raise ValueError("Cannot capture a placeholder by value.")
captured_inputs = [self._add_tensor_and_parents(x) for x in op.inputs]
captured_op = self.create_op(op.type, captured_inputs,
[o.dtype for o in op.outputs],
name=op.name, attrs=op.node_def.attr,
op_def=op_def)
for t, captured_t in zip(op.outputs, captured_op.outputs):
self._captured[t] = captured_t
return captured_op
示例12: make_placeholder_from_tensor
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def make_placeholder_from_tensor(t, scope=None):
"""Create a `tf.placeholder` for the Graph Editor.
Note that the correct graph scope must be set by the calling function.
Args:
t: a `tf.Tensor` whose name will be used to create the placeholder
(see function placeholder_name).
scope: absolute scope within which to create the placeholder. None
means that the scope of `t` is preserved. `""` means the root scope.
Returns:
A newly created `tf.placeholder`.
Raises:
TypeError: if `t` is not `None` or a `tf.Tensor`.
"""
return tf_array_ops.placeholder(
dtype=t.dtype, shape=t.get_shape(), name=placeholder_name(
t, scope=scope))
示例13: make_placeholder_from_dtype_and_shape
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def make_placeholder_from_dtype_and_shape(dtype, shape=None, scope=None):
"""Create a tf.placeholder for the Graph Editor.
Note that the correct graph scope must be set by the calling function.
The placeholder is named using the function placeholder_name (with no
tensor argument).
Args:
dtype: the tensor type.
shape: the tensor shape (optional).
scope: absolute scope within which to create the placeholder. None
means that the scope of t is preserved. "" means the root scope.
Returns:
A newly created tf.placeholder.
"""
return tf_array_ops.placeholder(
dtype=dtype, shape=shape, name=placeholder_name(scope=scope))
示例14: create_placeholders_from_signatures
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def create_placeholders_from_signatures(signatures):
"""Creates placeholders from given signatures.
Args:
signatures: Dict of `TensorSignature` objects or single `TensorSignature`,
or `None`.
Returns:
Dict of `tf.placeholder` objects or single `tf.placeholder`, or `None`.
"""
if signatures is None:
return None
if not isinstance(signatures, dict):
return signatures.get_placeholder()
return {
key: signatures[key].get_placeholder()
for key in signatures}
示例15: make_place_holder_tensors_for_base_features
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import placeholder [as 別名]
def make_place_holder_tensors_for_base_features(feature_columns):
"""Returns placeholder tensors for inference.
Args:
feature_columns: An iterable containing all the feature columns. All items
should be instances of classes derived from _FeatureColumn.
Returns:
A dict mapping feature keys to SparseTensors (sparse columns) or
placeholder Tensors (dense columns).
"""
# Get dict mapping features to FixedLenFeature or VarLenFeature values.
dict_for_parse_example = create_feature_spec_for_parsing(feature_columns)
placeholders = {}
for column_name, column_type in dict_for_parse_example.items():
if isinstance(column_type, parsing_ops.VarLenFeature):
# Sparse placeholder for sparse tensors.
placeholders[column_name] = array_ops.sparse_placeholder(
column_type.dtype, name="Placeholder_{}".format(column_name))
else:
# Simple placeholder for dense tensors.
placeholders[column_name] = array_ops.placeholder(
column_type.dtype,
shape=(None, column_type.shape[0]),
name="Placeholder_{}".format(column_name))
return placeholders